首页> 美国卫生研究院文献>PLoS Clinical Trials >Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity
【2h】

Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity

机译:蛋白质信号传导的传递函数:在纹状体神经可塑性模型中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of “source” species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the “target” species) with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of individual transfer functions, contradicts notions of ubiquitous complexity by showing input-dependent signal transmission inactivation.
机译:我们在蛋白质信号转导的背景下提出一种针对生化反应网络的新型配方。该模型由输入输出传递函数组成,这些函数使用稳定的平衡从微分方程派生。我们选择一组“源”种类,将其解释为输入信号。信号以特定的延迟和特定的传输强度传输到系统中的所有其他物种(“目标”物种)。在系统中所有其他反应的情况下,将延迟计算为达到目标物质稳定平衡之前的最大反应时间。透射强度是目标物质的浓度变化。计算出的输入输出传递函数可以存储在矩阵中,并配有参数,甚至可以根据状态变化调用以建立动态模型。通过将时域和主域分开,我们可以大大简化计算模型,从而避免了复杂动力系统的典型问题。生化反应系统的传递函数转换可以应用于信号转导的质量动力学模型。本文表明,这种方法产生了重要的新颖见解,同时保留了可完全测试和可执行的信号转导动态模型。特别是,我们可以将复杂的系统解构为单个物种之间的局部传递函数。例如,我们使用已发布的纹状体神经可塑性模型检查模块化和信号集成。出现的模块化对应于钙依赖性和cAMP依赖性途径之间的已知生物学区别。值得注意的是,我们发现总体互连性取决于输入的大小,在低输入浓度下具有较高的连通性,而在中高输入浓度下具有显着的模块化。直接从各个传递函数的性质得出的一般结果通过显示依赖于输入的信号传输失活而与普遍存在的复杂性概念相矛盾。

著录项

  • 期刊名称 PLoS Clinical Trials
  • 作者

    Gabriele Scheler;

  • 作者单位
  • 年(卷),期 2010(8),2
  • 年度 2010
  • 页码 e55762
  • 总页数 13
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号