首页> 美国卫生研究院文献>PLoS Clinical Trials >The Fate of Acetic Acid during Glucose Co-Metabolism by the Spoilage Yeast Zygosaccharomyces bailii
【2h】

The Fate of Acetic Acid during Glucose Co-Metabolism by the Spoilage Yeast Zygosaccharomyces bailii

机译:腐败酵母百力合酵母对葡萄糖共代谢过程中乙酸的命运

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Zygosaccharomyces bailii is one of the most widely represented spoilage yeast species, being able to metabolise acetic acid in the presence of glucose. To clarify whether simultaneous utilisation of the two substrates affects growth efficiency, we examined growth in single- and mixed-substrate cultures with glucose and acetic acid. Our findings indicate that the biomass yield in the first phase of growth is the result of the weighted sum of the respective biomass yields on single-substrate medium, supporting the conclusion that biomass yield on each substrate is not affected by the presence of the other at pH 3.0 and 5.0, at least for the substrate concentrations examined. In vivo 13C-NMR spectroscopy studies showed that the gluconeogenic pathway is not operational and that [2−13C]acetate is metabolised via the Krebs cycle leading to the production of glutamate labelled on C2, C3 and C4. The incorporation of [U-14C]acetate in the cellular constituents resulted mainly in the labelling of the protein and lipid pools 51.5% and 31.5%, respectively. Overall, our data establish that glucose is metabolised primarily through the glycolytic pathway, and acetic acid is used as an additional source of acetyl-CoA both for lipid synthesis and the Krebs cycle. This study provides useful clues for the design of new strategies aimed at overcoming yeast spoilage in acidic, sugar-containing food environments. Moreover, the elucidation of the molecular basis underlying the resistance phenotype of Z. bailii to acetic acid will have a potential impact on the improvement of the performance of S. cerevisiae industrial strains often exposed to acetic acid stress conditions, such as in wine and bioethanol production.
机译:百日酵母是最广泛代表的变质酵母种类之一,能够在葡萄糖存在下代谢乙酸。为了阐明两种底物的同时利用是否会影响生长效率,我们检查了葡萄糖和乙酸在单底物和混合底物培养物中的生长。我们的发现表明,生长第一阶段的生物量产量是单底物培养基上各个生物量产量的加权总和的结果,支持以下结论:每个底物上的生物量产量不受其他底物存在的影响。至少对于所检查的底物浓度为pH 3.0和5.0。体内 13 C-NMR光谱研究表明,糖原异生途径不起作用,并且[2- 13 C]乙酸盐通过克雷布斯循环代谢,从而产生在C2,C3和C4上标记的谷氨酸盐。 [U- 14 C]乙酸酯在细胞成分中的掺入主要导致蛋白质和脂质库的标记分别为51.5%和31.5%。总体而言,我们的数据表明,葡萄糖主要通过糖酵解途径代谢,而乙酸被用作脂质合成和克雷布斯循环的乙酰辅酶A的额外来源。这项研究为设计旨在克服酸性,含糖食品环境中的酵母变质的新策略提供了有用的线索。此外,阐明百日疫霉对乙酸的抗性表型的分子基础将对啤酒酵母工业菌株的性能改善产生潜在的影响,这些啤酒酵母经常暴露于乙酸胁迫条件下,例如在葡萄酒和生物乙醇中。生产。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号