首页> 美国卫生研究院文献>PLoS Clinical Trials >Automated Discrimination of Brain Pathological State Attending to Complex Structural Brain Network Properties: The Shiverer Mutant Mouse Case
【2h】

Automated Discrimination of Brain Pathological State Attending to Complex Structural Brain Network Properties: The Shiverer Mutant Mouse Case

机译:自动区分复杂的结构性大脑网络属性的脑病理状态:Shiverer突变小鼠案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neuroimaging classification procedures between normal and pathological subjects are sparse and highly dependent of an expert's clinical criterion. Here, we aimed to investigate whether possible brain structural network differences in the shiverer mouse mutant, a relevant animal model of myelin related diseases, can reflect intrinsic individual brain properties that allow the automatic discrimination between the shiverer and normal subjects. Common structural networks properties between shiverer (C3Fe.SWV Mbpshi/Mbpshi, n = 6) and background control (C3HeB.FeJ, n = 6) mice are estimated and compared by means of three diffusion weighted MRI (DW-MRI) fiber tractography algorithms and a graph framework. Firstly, we found that brain networks of control group are significantly more clustered, modularized, efficient and optimized than those of the shiverer group, which presented significantly increased characteristic path length. These results are in line with previous structural/functional complex brain networks analysis that have revealed topologic differences and brain network randomization associated to specific states of human brain pathology. In addition, by means of network measures spatial representations and discrimination analysis, we show that it is possible to classify with high accuracy to which group each subject belongs, providing also a probability value of being a normal or shiverer subject as an individual anatomical classifier. The obtained correct predictions (e.g., around 91.6–100%) and clear spatial subdivisions between control and shiverer mice, suggest that there might exist specific network subspaces corresponding to specific brain disorders, supporting also the point of view that complex brain network analyses constitutes promising tools in the future creation of interpretable imaging biomarkers.
机译:正常受试者和病理受试者之间的神经影像分类程序很少,并且高度依赖专家的临床标准。在这里,我们旨在调查颤抖小鼠突变体(一种与髓鞘相关疾病有关的动物模型)中可能的大脑结构网络差异是否能够反映出固有的个体大脑特性,从而可以自动区分颤抖和正常受试者。估计了颤抖(C3Fe.SWV Mbp shi / Mbp shi ,n = 6)和背景对照(C3HeB.FeJ,n = 6)小鼠之间的常见结构网络性质,通过三种扩散加权MRI(DW-MRI)纤维束成像算法和图形框架进行比较。首先,我们发现对照组的脑网络比颤抖组的脑网络更加集簇,模块化,高效和优化,呈现出特征路径长度的显着增加。这些结果与先前的结构/功能复杂的大脑网络分析相一致,后者已经揭示了拓扑差异和与人类大脑病理学特定状态相关的大脑网络随机化。另外,通过网络测量空间表示和辨别分析,我们表明可以高精度地对每个受试者所属的组进行分类,同时还提供了作为正常或颤抖受试者的概率值作为单独的解剖学分类器。获得的正确预测(例如,大约91.6–100%)和对照组和颤抖小鼠之间的空间细分清晰,这表明可能存在与特定脑部疾病相对应的特定网络子空间,这也支持了复杂的大脑网络分析构成有希望的观点将来创建可解释的成像生物标记物的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号