首页> 美国卫生研究院文献>PLoS Clinical Trials >Genome-Wide Integration on Transcription Factors Histone Acetylation and Gene Expression Reveals Genes Co-Regulated by Histone Modification Patterns
【2h】

Genome-Wide Integration on Transcription Factors Histone Acetylation and Gene Expression Reveals Genes Co-Regulated by Histone Modification Patterns

机译:全基因组转录因子组蛋白乙酰化和基因表达的全基因组揭示了组蛋白修饰模式共同调控的基因。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

N-terminal tails of H2A, H2B, H3 and H4 histone families are subjected to posttranslational modifications that take part in transcriptional regulation mechanisms, such as transcription factor binding and gene expression. Regulation mechanisms under control of histone modification are important but remain largely unclear, despite of emerging datasets for comprehensive analysis of histone modification. In this paper, we focus on what we call genetic harmonious units (GHUs), which are co-occurring patterns among transcription factor binding, gene expression and histone modification. We present the first genome-wide approach that captures GHUs by combining ChIP-chip with microarray datasets from Saccharomyces cerevisiae. Our approach employs noise-robust soft clustering to select patterns which share the same preferences in transcription factor-binding, histone modification and gene expression, which are all currently implied to be closely correlated. The detected patterns are a well-studied acetylation of lysine 16 of H4 in glucose depletion as well as co-acetylation of five lysine residues of H3 with H4 Lys12 and H2A Lys7 responsible for ribosome biogenesis. Furthermore, our method further suggested the recognition of acetylated H4 Lys16 being crucial to histone acetyltransferase ESA1, whose essential role is still under controversy, from a microarray dataset on ESA1 and its bypass suppressor mutants. These results demonstrate that our approach allows us to provide clearer principles behind gene regulation mechanisms under histone modifications and detect GHUs further by applying to other microarray and ChIP-chip datasets. The source code of our method, which was implemented in MATLAB (), is available from the supporting page for this paper: .
机译:对H2A,H2B,H3和H4组蛋白家族的N末端尾巴进行翻译后修饰,参与转录调节机制,例如转录因子结合和基因表达。在组蛋白修饰的控制下的调控机制很重要,但尽管有用于组蛋白修饰的综合分析的新兴数据集,但在很大程度上仍不清楚。在本文中,我们专注于所谓的遗传和谐单位(GHU),它们是转录因子结合,基因表达和组蛋白修饰之间的共生模式。我们提出了第一个全基因组方法,通过将ChIP芯片与来自酿酒酵母的微阵列数据集相结合来捕获GHU。我们的方法采用抗噪软聚类来选择模式,这些模式在转录因子结合,组蛋白修饰和基因表达方面具有相同的偏好,这些隐含着目前都被认为是紧密相关的。所检测的模式是对葡萄糖耗竭中H4的赖氨酸16的充分研究,以及H3的五个赖氨酸残基与负责核糖体生物发生的H4 Lys12和H2A Lys7的共乙酰化。此外,我们的方法还建议从ESA1及其旁路抑制突变体的微阵列数据集中,识别乙酰化H4 Lys16对组蛋白乙酰转移酶ESA1至关重要,而ESA1的关键作用仍在争论中。这些结果表明,我们的方法使我们能够为组蛋白修饰下的基因调控机制提供更清晰的原理,并通过应用于其他微阵列和ChIP芯片数据集来进一步检测GHU。我们的方法的源代码已在MATLAB()中实现,可从本文的支持页面获得:。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号