首页> 美国卫生研究院文献>Microbial Cell Factories >Engineering microbial consortia by division of labor
【2h】

Engineering microbial consortia by division of labor

机译:按分工划分的微生物联合体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During microbial applications, metabolic burdens can lead to a significant drop in cell performance. Novel synthetic biology tools or multi-step bioprocessing (e.g., fermentation followed by chemical conversions) are therefore needed to avoid compromised biochemical productivity from over-burdened cells. A possible solution to address metabolic burden is Division of Labor (DoL) via natural and synthetic microbial consortia. In particular, consolidated bioprocesses and metabolic cooperation for detoxification or cross feeding (e.g., vitamin C fermentation) have shown numerous successes in industrial level applications. However, distributing a metabolic pathway among proper hosts remains an engineering conundrum due to several challenges: complex subpopulation dynamics/interactions with a short time-window for stable production, suboptimal cultivation of microbial communities, proliferation of cheaters or low-producers, intermediate metabolite dilution, transport barriers between species, and breaks in metabolite channeling through biosynthesis pathways. To develop stable consortia, optimization of strain inoculations, nutritional divergence and crossing feeding, evolution of mutualistic growth, cell immobilization, and biosensors may potentially be used to control cell populations. Another opportunity is direct integration of non-bioprocesses (e.g., microbial electrosynthesis) to power cell metabolism and improve carbon efficiency. Additionally, metabolic modeling and 13C-metabolic flux analysis of mixed culture metabolism and cross-feeding offers a computational approach to complement experimental research for improved consortia performance.
机译:在微生物应用过程中,代谢负担可能导致细胞性能显着下降。因此,需要新的合成生物学工具或多步生物处理(例如,发酵后进行化学转化),以避免由于负担过重的细胞而损害生物化学生产率。解决天然代谢负担的一种可能解决方案是通过天然和合成微生物联合体进行分工(DoL)。特别地,用于排毒或交叉进食(例如维生素C发酵)的合并的生物过程和代谢合作在工业水平的应用中已显示出许多成功。然而,由于以下几个挑战,在适当的宿主之间分配代谢途径仍然是一个工程难题:复杂的亚种群动态/相互作用,具有短时的稳定生产窗口,微生物群落的次优培养,骗子或低产者的繁殖,中间产物的稀释,物种之间的运输障碍以及通过生物合成途径的代谢产物通道的破坏。为了建立稳定的联合体,菌株接种的优化,营养差异和交叉饲喂,相互生长,细胞固定和生物传感器的进化可能潜在地用于控制细胞群体。另一个机会是将非生物过程(例如微生物电合成)直接整合以促进细胞代谢并提高碳效率。此外,混合培养物代谢和交叉进料的代谢建模和 13 C代谢通量分析提供了一种计算方法,可以补充实验研究以改善财团的绩效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号