首页> 美国卫生研究院文献>Membranes >Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review
【2h】

Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review

机译:基于纳米纤维素的独立式超级电容器的导电膜:综述

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is currently strong demand for the development of advanced energy storage devices with inexpensive, flexibility, lightweight, and eco-friendly materials. Cellulose is considered as a suitable material that has the potential to meet the requirements of the advanced energy storage devices. Specifically, nanocellulose has been shown to be an environmentally friendly material that has low density and high specific strength, Young’s modulus, and surface-to-volume ratio compared to synthetic materials. Furthermore, it can be isolated from a variety of plants through several simple and rapid methods. Cellulose-based conductive composite membranes can be assembled into supercapacitors to achieve free-standing, lightweight, and flexible energy storage devices. Therefore, they have attracted extensive research interest for the development of small-size wearable devices, implantable sensors, and smart skin. Various conductive materials can be loaded onto nanocellulose substrates to endow or enhance the electrochemical performance of supercapacitors by taking advantage of the high loading capacity of nanocellulose membranes for brittle conductive materials. Several factors can impact the electronic performance of a nanocellulose-based supercapacitor, such as the methods of loading conductive materials and the types of conductive materials, as will be discussed in this review.
机译:当前,迫切需要开发具有廉价,柔性,轻便和环保材料的先进储能设备。纤维素被认为是具有满足先进能量存储设备要求的潜力的合适材料。特别是,纳米纤维素已被证明是一种环保材料,与合成材料相比,密度低,比强度高,杨氏模量和表面积体积比高。此外,可以通过几种简单而快速的方法将其从多种植物中分离出来。可以将基于纤维素的导电复合膜组装成超级电容器,以实现自立,轻便和灵活的储能装置。因此,它们对于小型可穿戴设备,可植入传感器和智能皮肤的开发引起了广泛的研究兴趣。通过利用纳米纤维素膜对脆性导电材料的高装载能力,可以将各种导电材料装载到纳米纤维素基材上以赋予或增强超级电容器的电化学性能。几个因素会影响基于纳米纤维素的超级电容器的电子性能,例如加载导电材料的方法和导电材料的类型,这将在本文中进行讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号