首页> 美国卫生研究院文献>Membranes >Synthesis and Characterization of a High Flux Nanocellulose–Cellulose Acetate Nanocomposite Membrane
【2h】

Synthesis and Characterization of a High Flux Nanocellulose–Cellulose Acetate Nanocomposite Membrane

机译:高通量纳米纤维素-醋酸纤维素纳米复合膜的合成与表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Despite the advantages of membrane processes, their high energy requirement remains a major challenge. Fabrication of nanocomposite membranes by incorporating various nanomaterials in the polymer matrix has shown promise for enhancing membrane flux. In this study, we embed functionalized cellulose nanofibers (CNFs) with high aspect ratios in the polymer matrix to create hydrophilic nanochannels that reduce membrane resistance and facilitate the facile transport of water molecules through the membrane. The results showed that the incorporation of 0.1 wt % CNF into the polymer matrix did not change the membrane flux (~15 L·m2·h1) and Bovine Serum Albumin (BSA) Fraction V rejection, while increasing the CNF content to 0.3 wt % significantly enhanced the flux by seven times to ~100 L·m2·h1, but the rejection was decreased to 60–70%. Such a change in membrane performance was due to the formation of hydrophilic nanochannels by the incorporation of CNF (corroborated by the SEM images), decreasing the membrane resistance, and thus enhancing the flux. When the concentration of the CNF in the membrane matrix was further increased to 0.6 wt %, no further increase in the membrane flux was observed, however, the BSA rejection was found to increase to 85%. Such an increase in the rejection was related to the electrostatic repulsion between the negatively-charged CNF-loaded nanochannels and the BSA, as demonstrated by zeta potential measurements. SEM images showed the bridging effect of the CNF in the nanochannels with high CNF contents.
机译:尽管膜工艺有很多优点,但它们对能量的高要求仍然是一个重大挑战。通过在聚合物基质中掺入各种纳米材料来制造纳米复合膜已显示出增强膜通量的希望。在这项研究中,我们将高纵横比的功能化纤维素纳米纤维(CNF)嵌入聚合物基质中,以创建亲水性纳米通道,从而降低膜的阻力并促进水分子通过膜的便捷运输。结果表明,将0.1 wt%CNF掺入聚合物基质中不会改变膜通量(〜15 L · m 2 · h 1 )和牛血清白蛋白(BSA)组分V抑制,同时将CNF含量提高到0.3 wt%,可将通量提高7倍,达到〜100 L · m < mrow> 2 · h 1 ,但拒绝率降低至60-70% 。膜性能的这种变化归因于通过掺入CNF形成的亲水性纳米通道(由SEM图像证实),降低了膜电阻,从而提高了通量。当膜基质中CNF的浓度进一步增加至0.6wt%时,未观察到膜通量进一步增加,然而,发现BSA截留率增加至85%。拒斥的这种增加与负电荷CNF加载的纳米通道和BSA之间的静电排斥有关,如Zeta电势测量所证明的。 SEM图像显示了CNF在具有高CNF含量的纳米通道中的桥接作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号