首页> 美国卫生研究院文献>The Journal of Neuroscience >The Generation of Antiphase Oscillations and Synchrony by a Rebound-Based Vertebrate Central Pattern Generator
【2h】

The Generation of Antiphase Oscillations and Synchrony by a Rebound-Based Vertebrate Central Pattern Generator

机译:基于回弹的脊椎动物中央模式发生器生成反相振荡和同步

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many neural circuits are capable of generating multiple stereotyped outputs after different sensory inputs or neuromodulation. We have previously identified the central pattern generator (CPG) for Xenopus tadpole swimming that involves antiphase oscillations of activity between the left and right sides. Here we analyze the cellular basis for spontaneous left–right motor synchrony characterized by simultaneous bursting on both sides at twice the swimming frequency. Spontaneous synchrony bouts are rare in most tadpoles, and they instantly emerge from and switch back to swimming, most frequently within the first second after skin stimulation. Analyses show that only neurons that are active during swimming fire action potentials in synchrony, suggesting both output patterns derive from the same neural circuit. The firing of excitatory descending interneurons (dINs) leads that of other types of neurons in synchrony as it does in swimming. During synchrony, the time window between phasic excitation and inhibition is 7.9 ± 1 ms, shorter than that in swimming (41 ± 2.3 ms). The occasional, extra midcycle firing of dINs during swimming may initiate synchrony, and mismatches of timing in the left and right activity can switch synchrony back to swimming. Computer modeling supports these findings by showing that the same neural network, in which reciprocal inhibition mediates rebound firing, can generate both swimming and synchrony without circuit reconfiguration. Modeling also shows that lengthening the time window between phasic excitation and inhibition by increasing dIN synaptic/conduction delay can improve the stability of synchrony.
机译:许多神经回路能够在不同的感觉输入或神经调节后产生多个定型输出。我们之前已经确定了非洲爪蟾swimming游泳的中央模式生成器(CPG),该模式涉及左侧和右侧之间的活动的反相振荡。在这里,我们分析了自发左右运动同步性的细胞基础,其特征是两侧以两倍游泳频率同时爆发。在大多数synchro中,自发性同步发作很少见,它们会立即出现并切换回游泳状态,最常见的是在皮肤刺激后的第一秒内。分析表明,只有在游泳时火动作电位处于活动状态的神经元才是同步的,这表明两种输出模式均来自同一神经回路。兴奋性下降的中间神经元(dIN)的发射与游泳中的神经元同步发动。在同步过程中,阶段性激励和抑制之间的时间窗为7.9±1 ms,比游泳时(41±2.3 ms)要短。游泳过程中偶尔偶尔会产生额外的dIN中期触发,这可能会启动同步,而左右活动中的计时不匹配会导致同步切换回游泳。计算机模型通过显示相同的神经网络(其中相互抑制作用介导反弹击发)可以产生游泳和同步而无需重新配置电路,从而支持了这些发现。建模还表明,通过增加dIN突触/传导延迟来延长相励和抑制之间的时间窗口可以提高同步的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号