您现在的位置:首页>美国卫生研究院文献>The Journal of General Virology

期刊信息

  • 期刊名称:

    -

  • 刊频: Continuously updated 2017-
  • NLM标题: J Gen Virol
  • iso缩写: -
  • ISSN: -
  • 排序:
  • 显示:
  • 每页:
全选(0
<16/20>
970条结果
  • 机译 肌肽显着改善H9N2猪流感病毒引起的急性肺损伤
    摘要:Oxidative stress injury is an important pathogenesis of influenza virus in critically ill patients. The present study investigated the efficacy of carnosine, an antioxidant and free radical scavenger, on a model of acute lung injury (ALI) induced by H9N2 swine influenza virus. Female specific-pathogen-free BALB/c mice were randomized into four groups and treated as follows: (1) H9N2 group, (2) mock control group, (3) H9N2+carnosine group and (4) carnosine control group. The H9N2 group mice were inoculated intranasally with A/Swine/Hebei/012/2008/ (H9N2) virus (100 μl) in allantoic fluid (AF), whilst mock-infected animals were intranasally inoculated with non-infectious AF. Carnosine [10 mg (kg body mass)− 1] was administered orally (100 μl) for 7 days consecutively. The survival rate, lung water content, TNF-α and IL-1β levels, lung histopathology, myeloperoxidase (MPO) activity, and Toll-like receptor (TLR)-4 levels were determined at 2, 4, 6, 8 and 14 days after inoculation. Carnosine treatment effectively decreased the mortality (43 versus 75 %, P < 0.05), significantly ameliorated pathological lesions in lungs and decreased the lung wet/dry mass ratio (P < 0.05). It also inhibited MPO activity, suppressed TNF-α and IL-1β release, decreased the H9N2 viral titre, and markedly inhibited levels of TLR-4 mRNA and protein in the lungs of infected mice (P < 0.05), which supported the use of carnosine for managing severe influenza cases.
  • 机译 黑猩猩(SIVcpz)和相关SIV的猿猴免疫缺陷病毒(SIV)的Nef蛋白对灵长类慢病毒受体的下调:对SIVcpz出现时进化事件的影响
    摘要:It has been estimated that human immunodeficiency virus type 1 originated from the zoonotic transmission of simian immunodeficiency virus (SIV) of chimpanzees, SIVcpz, and that SIVcpz emerged by the recombination of two lineages of SIVs in Old World monkeys (SIVgsn/mon/mus in guenons and SIVrcm in red-capped mangabeys) and SIVcpz Nef is most closely related to SIVrcm Nef. These observations suggest that SIVrcm Nef had an advantage over SIVgsn/mon/mus during the evolution of SIVcpz in chimpanzees, although this advantage remains uncertain. Nef is a multifunctional protein which downregulates CD4 and coreceptor proteins from the surface of infected cells, presumably to limit superinfection. To assess the possibility that SIVrcm Nef was selected by its superior ability to downregulate viral entry receptors in chimpanzees, we compared its ability to down-modulate viral receptor proteins from humans, chimpanzees and red-capped mangabeys with Nef proteins from eight other different strains of SIVs. Surprisingly, the ability of SIVrcm Nef to downregulate CCR5, CCR2B and CXCR6 was comparable to or lower than SIVgsn/mon/mus Nef, indicating that ability to down-modulate chemokine receptors was not the selective pressure. However, SIVrcm Nef significantly downregulates chimpanzee CD4 over SIVgsn/mon/mus Nefs. Our findings suggest the possibility that the selection of SIVrcm Nef by ancestral SIVcpz is due to its superior capacity to down-modulate chimpanzees CD4 rather than coreceptor proteins.
  • 机译 甲型流感病毒感染的野猪中病毒脱落和抗体反应的动力学
    摘要:Given their free-ranging habits, feral swine could serve as reservoirs or spatially dynamic ‘mixing vessels’ for influenza A virus (IAV). To better understand virus shedding patterns and antibody response dynamics in the context of IAV surveillance amongst feral swine, we used IAV of feral swine origin to perform infection experiments. The virus was highly infectious and transmissible in feral swine, and virus shedding patterns and antibody response dynamics were similar to those in domestic swine. In the virus-inoculated and sentinel groups, virus shedding lasted ≤ 6 and ≤ 9 days, respectively. Antibody titres in inoculated swine peaked at 1 : 840 on day 11 post-inoculation (p.i.), remained there until 21 days p.i. and dropped to < 1 : 220 at 42 days p.i. Genomic sequencing identified changes in wildtype (WT) viruses and isolates from sentinel swine, most notably an amino acid divergence in nucleoprotein position 473. Using data from cell culture as a benchmark, sensitivity and specificity of a matrix gene-based quantitative reverse transcription-PCR method using nasal swab samples for detection of IAV in feral swine were 78.9 and 78.1 %, respectively. Using data from haemagglutination inhibition assays as a benchmark, sensitivity and specificity of an ELISA for detection of IAV-specific antibody were 95.4 and 95.0 %, respectively. Serological surveillance from 2009 to 2014 showed that ∼7.58 % of feral swine in the USA were positive for IAV. Our findings confirm the susceptibility of IAV infection and the high transmission ability of IAV amongst feral swine, and also suggest the need for continued surveillance of IAVs in feral swine populations.
  • 机译 一种评估牛乳头瘤病毒对马类结节样肿瘤的预防/治疗作用的新型鼠模型
    摘要:Equine sarcoids are highly recurrent bovine papillomavirus (BPV)-induced fibroblastic neoplasms that are the most common skin tumours in horses. In order to facilitate the study of potential equine sarcoid prophylactics or therapeutics, which can be a slow and costly process in equines, a murine model for BPV-1 protein-expressing equine sarcoid-like tumours was developed in mice through stable transfection of BPV-1 E5 and E6 in a murine fibroblast tumour cell line (K-BALB). Like equine sarcoids, these murine tumour cells (BPV-KB) were of fibroblast origin, were tumorigenic and expressed BPV-1 proteins. As an initial investigation of the preclinical potential of this tumour model for equine sarcoids prophylactics, mice were immunized with BPV-1 E5E6 Venezuelan equine encephalitis virus replicon particles, prior to BPV-KB challenge, which resulted in an increased tumour-free period compared with controls, indicating that the BPV-KB murine model may be a valuable preclinical alternative to equine clinical trials.
  • 机译 鉴定口蹄疫病毒衣壳上的新型细胞培养适应位点
    摘要:Vaccination remains the most effective tool for control of foot-and-mouth disease both in endemic countries and as an emergency preparedness for new outbreaks. Foot-and-mouth disease vaccines are chemically inactivated virus preparations and the production of new vaccines is critically dependent upon cell culture adaptation of field viruses, which can prove problematic. A major driver of cell culture adaptation is receptor availability. Field isolates of foot-and-mouth disease virus (FMDV) use RGD-dependent integrins as receptors, whereas cell culture adaptation often selects for variants with altered receptor preferences. Previously, two independent sites on the capsid have been identified where mutations are associated with improved cell culture growth. One is a shallow depression formed by the three major structural proteins (VP1–VP3) where mutations create a heparan sulphate (HS)-binding site (the canonical HS-binding site). The other involves residues of VP1 and is located at the fivefold symmetry axis. For some viruses, changes at this site result in HS binding; for others, the receptors are unknown. Here, we report the identification of a novel site on VP2 where mutations resulted in an expanded cell tropism of a vaccine variant of A/IRN/87 (called A − ). Furthermore, we show that introducing the same mutations into a different type A field virus (A/TUR/2/2006) resulted in the same expanded cell culture tropism as the A/IRN/87 A −  vaccine variant. These observations add to the evidence for multiple cell attachment mechanisms for FMDV and may be useful for vaccine manufacture when cell culture adaptation proves difficult.
  • 机译 CX3CR1是人类呼吸道上皮细胞中呼吸道合胞病毒感染的重要表面分子
    摘要:Respiratory syncytial virus (RSV) is a major cause of severe pneumonia and bronchiolitis in infants and young children, and causes disease throughout life. Understanding the biology of infection, including virus binding to the cell surface, should help develop antiviral drugs or vaccines. The RSV F and G glycoproteins bind cell surface heparin sulfate proteoglycans (HSPGs) through heparin-binding domains. The G protein also has a CX3C chemokine motif which binds to the fractalkine receptor CX3CR1. G protein binding to CX3CR1 is not important for infection of immortalized cell lines, but reportedly is so for primary human airway epithelial cells (HAECs), the primary site for human infection. We studied the role of CX3CR1 in RSV infection with CX3CR1-transfected cell lines and HAECs with variable percentages of CX3CR1-expressing cells, and the effect of anti-CX3CR1 antibodies or a mutation in the RSV CX3C motif. Immortalized cells lacking HSPGs had low RSV binding and infection, which was increased markedly by CX3CR1 transfection. CX3CR1 was expressed primarily on ciliated cells, and ∼50 % of RSV-infected cells in HAECs were CX3CR1+. HAECs with more CX3CR1-expressing cells had a proportional increase in RSV infection. Blocking G binding to CX3CR1 with anti-CX3CR1 antibody or a mutation in the CX3C motif significantly decreased RSV infection in HAECs. The kinetics of cytokine production suggested that the RSV/CX3CR1 interaction induced RANTES (regulated on activation normal T-cell expressed and secreted protein), IL-8 and fractalkine production, whilst it downregulated IL-15, IL1-RA and monocyte chemotactic protein-1. Thus, the RSV G protein/CX3CR1 interaction is likely important in infection and infection-induced responses of the airway epithelium, the primary site of human infection.
  • 机译 甲病毒RNA合成和非结构蛋白功能
    摘要:The members of the genus Alphavirus are positive-sense RNA viruses, which are predominantly transmitted to vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly death. In recent years, alphaviruses have received significant attention from public health authorities as a consequence of the dramatic emergence of chikungunya virus in the Indian Ocean islands and the Caribbean. Currently, no safe, approved or effective vaccine or antiviral intervention exists for human alphavirus infection. The molecular biology of alphavirus RNA synthesis has been well studied in a few species of the genus and represents a general target for antiviral drug development. This review describes what is currently understood about the regulation of alphavirus RNA synthesis, the roles of the viral non-structural proteins in this process and the functions of cis-acting RNA elements in replication, and points to open questions within the field.
  • 机译 HIV Vpr蛋白上调microRNA-122表达并刺激丙型肝炎病毒复制
    摘要:Human immunodeficiency virus (HIV)/hepatitis C virus (HCV) co-infection is characterized by higher serum HCV RNA loads compared with HCV mono-infection. However, the relationship between HIV and HCV replication remains to be clarified. HIV Vpr has been shown to play an essential role in HIV replication. In this study, we aimed to explore the role of Vpr in HCV replication and pathogenesis. We therefore used the genotype 2a full-length HCV strain JFH1 infection system and the genotype 1b full-length HCV replicon OR6 cell line to analyse the effects of Vpr on HCV replication. We found that Vpr promoted HCV 5′ UTR activity, HCV RNA replication and HCV protein expression in two HCV infection cell models. Additionally, lymphocyte-produced Vpr significantly induced HCV 5′ UTR activity and HCV replication in hepatocytes. We also found that Vpr upregulated the expression of miR-122 by stimulating its promoter activity. Furthermore, an miR-122 inhibitor suppressed the Vpr-mediated enhancement of both HCV 5′ UTR activity and HCV replication. In summary, our results revealed that the Vpr-upregulated expression of miR-122 is closely related to the stimulation of HCV 5′ UTR activity and HCV replication by Vpr, providing new evidence for how HIV interacts with HCV during HIV/HCV co-infection.
  • 机译 人类巨细胞病毒对骨髓祖细胞的潜在感染可通过细胞IL-10 / PEA-15途径保护细胞免受FAS介导的细胞凋亡
    摘要:Latent infection of primary CD34+ progenitor cells by human cytomegalovirus (HCMV) results in their increased survival in the face of pro-apoptotic signals. For instance, we have shown previously that primary myeloid cells are refractory to FAS-mediated killing and that cellular IL-10 (cIL-10) is an important survival factor for this effect. However, how cIL-10 mediates this protection is unclear. Here, we have shown that cIL-10 signalling leading to upregulation of the cellular factor PEA-15 mediates latency-associated protection of CD34+ progenitor cells from the extrinsic death pathway.
  • 机译 人类乳头瘤病毒16型L1蛋白直接与E2相互作用并增强E2依赖性复制和转录激活
    摘要:The human papillomavirus (HPV) E2 protein is a multifunctional protein essential for the control of virus gene expression, genome replication and persistence. E2 is expressed throughout the differentiation-dependent virus life cycle and is functionally regulated by association with multiple viral and cellular proteins. Here, we show for the first time to our knowledge that HPV16 E2 directly associates with the major capsid protein L1, independently of other viral or cellular proteins. We have mapped the L1 binding region within E2 and show that the α-2 helices within the E2 DNA-binding domain mediate L1 interaction. Using cell-based assays, we show that co-expression of L1 and E2 results in enhanced transcription and virus origin-dependent DNA replication. Upon co-expression in keratinocytes, L1 reduces nucleolar association of E2 protein, and when co-expressed with E1 and E2, L1 is partially recruited to viral replication factories. Furthermore, co-distribution of E2 and L1 was detected in the nuclei of upper suprabasal cells in stratified epithelia of HPV16 genome-containing primary human keratinocytes. Taken together, our findings suggest that the interaction between E2 and L1 is important for the regulation of E2 function during the late events of the HPV life cycle.
  • 机译 在患有呼吸道疾病的牛中发现一种新型尼多病毒
    摘要:The family Coronaviridae represents a diverse group of vertebrate RNA viruses, all with genomes greater than 26 000 nt. Here, we report the discovery and genetic characterization of a novel virus present in cattle with respiratory disease. Phylogenetic characterization of this virus revealed that it clusters within the subfamily Torovirinae, in the family Coronaviridae. The complete genome consists of only 20 261 nt and represents the smallest reported coronavirus genome. We identified seven ORFs, including the canonical nidovirus ORF1a and ORF1b. Analysis of polyprotein 1ab revealed that this virus, tentatively named bovine nidovirus (BoNV), shares the highest homology with the recently described python-borne nidoviruses and contains several conserved nidovirus motifs, but does not encode the NendoU or O-MT domains that are present in other viruses within the family Coronaviridae. In concert with its reduced genome, the atypical domain architecture indicates that this virus represents a unique lineage within the order Nidovirales.
  • 机译 丙型肝炎病毒NS5A蛋白通过脯氨酸基序依赖性相互作用阻止表皮生长因子受体降解
    摘要:Hepatitis C virus (HCV) establishes a persistent infection that in many cases leads to cirrhosis and hepatocellular carcinoma. The non-structural 5A protein (NS5A) has been implicated in this process as it contains a C-terminal polyproline motif (termed P2) that binds to Src homology 3 (SH3) domains to regulate cellular signalling and trafficking pathways. We have shown previously that NS5A impaired epidermal growth factor (EGF) receptor (EGFR) endocytosis, thereby inhibiting EGF-stimulated EGFR degradation by a mechanism that remained unclear. As EGFR has been implicated in HCV cell entry and trafficking of the receptor involves several SH3-domain containing proteins, we investigated in more detail the mechanisms by which NS5A perturbs EGFR trafficking. We demonstrated that the P2 motif was required for the NS5A-mediated disruption to EGFR trafficking. We further demonstrated that the P2 motif was required for an interaction between NS5A and CMS, a homologue of CIN85 that has previously been implicated in EGFR endocytosis. We provided evidence that CMS was involved in the NS5A-mediated perturbation of EGFR trafficking. We also showed that NS5A effected a loss of EGFR ubiquitination in a P2-motif-dependent fashion. These data provide clues to the mechanism by which NS5A regulates the trafficking of a key cellular receptor and demonstrate for the first time the ability of NS5A to regulate host cell ubiquitination pathways.
  • 机译 蓬塔托罗(Punta Toro)物种复合体的表征(静脉病毒属,Bunyaviridae家族)
    摘要:Punta Toro virus (PTV), a member of the PTV complex, is a relatively common causative agent of febrile illness in Panama that is often misdiagnosed as ‘dengue’ or ‘influenza’. Currently, only two named members make up this species complex, PTV and Buenaventura virus (BUEV). Genomic and antigenic characterization of 17 members of the PTV complex, nine of which were isolated from human acute febrile illness cases, reveals that this species complex is composed of six distant viruses. We propose to add four additional new viruses, designated Leticia virus, Cocle virus, Campana virus and Capira virus.
  • 机译 欧亚野禽中甲型流感病毒的进化和时空动态:全基因组序列数据的系统发育和系统地理研究
    摘要:Low pathogenic avian influenza A viruses (IAVs) have a natural host reservoir in wild waterbirds and the potential to spread to other host species. Here, we investigated the evolutionary, spatial and temporal dynamics of avian IAVs in Eurasian wild birds. We used whole-genome sequences collected as part of an intensive long-term Eurasian wild bird surveillance study, and combined this genetic data with temporal and spatial information to explore the virus evolutionary dynamics. Frequent reassortment and co-circulating lineages were observed for all eight genomic RNA segments over time. There was no apparent species-specific effect on the diversity of the avian IAVs. There was a spatial and temporal relationship between the Eurasian sequences and significant viral migration of avian IAVs from West Eurasia towards Central Eurasia. The observed viral migration patterns differed between segments. Furthermore, we discuss the challenges faced when analysing these surveillance and sequence data, and the caveats to be borne in mind when drawing conclusions from the apparent results of such analyses.
  • 机译 减毒的猿猴免疫缺陷病毒减毒活疫苗赋予对巨噬细胞嗜性和神经毒性野生型SIV攻击的超级感染抗性
    摘要:Vaccination with live attenuated simian immunodeficiency virus (SIV) in non-human primate species provides a means of characterizing the protective processes of retroviral superinfection and may lead to novel advances of human immunodeficiency virus (HIV)/AIDS vaccine design. The minimally attenuated SIVmacC8 vaccine has been demonstrated to elicit early potent protection against pathogenic rechallenge with genetically diverse viral isolates in cynomolgus macaques (Macaca fascicularis). In this study, we have characterized further the biological breadth of this vaccine protection by assessing the ability of both the nef-disrupted SIVmacC8 and its nef-intact counterpart SIVmacJ5 viruses to prevent superinfection with the macrophage/neurotropic SIVmac239/17E-Fr (SIVmac17E-Fr) isolate. Inoculation with either SIVmacC8 or SIVmacJ5 and subsequent detailed characterization of the viral replication kinetics revealed a wide range of virus–host outcomes. Both nef-disrupted and nef-intact immunizing viruses were able to prevent establishment of SIVmac17E-Fr in peripheral blood and secondary lymphoid tissues. Differences in virus kinetics, indicative of an active process, identified uncontrolled replication in one macaque which although able to prevent SIVmac17E-Fr superinfection led to extensive neuropathological complications. The ability to prevent a biologically heterologous, CD4-independent/CCR5+ viral isolate and the macrophage-tropic SIVmac316 strain from establishing infection supports the hypothesis that direct target cell blocking is unlikely to be a central feature of live lentivirus vaccination. These data provide further evidence to demonstrate that inoculation of a live retroviral vaccine can deliver broad spectrum protection against both macrophage-tropic as well as lymphocytotropic viruses. These data add to our knowledge of live attenuated SIV vaccines but further highlight potential safety concerns of vaccinating with a live retrovirus.
  • 机译 卡波西氏肉瘤相关疱疹病毒的复制和转录激活因子对开放阅读框45的激活和降解
    摘要:The open reading frame 45 (ORF45) of the Kaposi's sarcoma-associated herpesvirus (KSHV) is an immediate-early phosphorylated tegument protein critical for viral escape from host immune surveillance. Its expression is upregulated by the viral replication and transcription activator (RTA), a key protein that controls the switch from latency to lytic replication. We report here that ORF45 expression was not only upregulated by RTA, but ORF45 could also be degraded by RTA in a proteasome-dependent manner. The ORF45 was activated by RTA via activation of the ORF45 promoter, and the promoter region from nt 69 271 to nt 69 026 was involved. In chronic KSHV infected TRE-BCBL-1 RTA cells, the endogenous ORF45 protein increased dramatically after the induction of RTA expression, but then decreased rapidly after 8 h post-induction. Our study suggests that RTA might control the kinetics of viral replication through fine-tuning of the level of ORF45 and other viral/host proteins.
  • 机译 黄病毒样颗粒膜融合的理化要求和动力学
    摘要:Flaviviruses deliver their RNA genome into the host-cell cytoplasm by fusing their lipid envelope with a cellular membrane. Expression of the flavivirus pre-membrane and envelope glycoprotein genes in the absence of other viral genes results in the spontaneous assembly and secretion of virus-like particles (VLPs) with membrane fusion activity. Here, we examined the physico-chemical requirements for membrane fusion of VLPs from West Nile and Japanese encephalitis viruses. In a bulk fusion assay, optimal hemifusion (or lipid mixing) efficiencies were observed at 37 °C. Fusion efficiency increased with decreasing pH; half-maximal hemifusion was attained at pH 5.6. The anionic lipids bis(monoacylglycero)phosphate and phosphatidylinositol-3-phosphate, when present in the target membrane, significantly enhanced fusion efficiency, consistent with the emerging model that flaviviruses fuse with intermediate-to-late endosomal compartments, where these lipids are most abundant. In a single-particle fusion assay, VLPs catalysed membrane hemifusion, tracked as lipid mixing with the cellular membrane, on a timescale of 7–20 s after acidification. Lipid mixing kinetics suggest that hemifusion is a kinetically complex, multistep process.
  • 机译 致病性和非致病性裂谷热病毒感染后小鼠骨髓衍生的巨噬细胞的细胞因子反应
    摘要:Rift Valley fever virus (RVFV) is the most pathogenic member of the genus Phlebovirus within the family Bunyaviridae, and can cause severe disease in humans and livestock. Until recently, limited information has been published on the cellular host response elicited by RVFV, particularly in macrophages and dendritic cells, which play critical roles in stimulating adaptive and innate immune responses to viral infection. In an effort to define the initial response of host immunomodulatory cells to infection, primary mouse bone marrow derived macrophages (BMDM) were infected with the pathogenic RVFV strain ZH501, or attenuated strains MP-12 or MP-12 based Clone13 type (rMP12-C13 type), and cytokine secretion profiles examined. The secretion of T helper (Th)1-associated antiviral cytokines, chemokines and various interleukins increased rapidly after infection with the attenuated rMP12-C13 type RVFV, which lacks a functional NSs virulence gene. In comparison, infection with live-attenuated MP-12 encoding a functional NSs gene appeared to cause a delayed immune response, while pathogenic ZH501 ablates the immune response almost entirely. These data demonstrate that NSs can inhibit components of the BMDM antiviral response and supports previous work indicating that NSs can specifically regulate the type I interferon response in macrophages. Furthermore, our data demonstrate that genetic differences between ZH501 and MP-12 reduce the ability of MP-12 to inhibit antiviral signalling and subsequently reduce virulence in BMDM, demonstrating that viral components other than NSs play a critical role in regulating the host response to RVFV infection.
  • 机译 新的重组和欧洲猪流感病毒通过雪貂模型中的直接接触有效传播
    摘要:The reverse zoonotic events that introduced the 2009 pandemic influenza virus into pigs have drastically increased the diversity of swine influenza viruses in Europe. The pandemic potential of these novel reassortments is still unclear, necessitating enhanced surveillance of European pigs with additional focus on risk assessment of these new viruses. In this study, four European swine influenza viruses were assessed for their zoonotic potential. Two of the four viruses were enzootic viruses of subtype H1N2 (with avian-like H1) and H3N2, and two were new reassortants, one with avian-like H1 and human-like N2 and one with 2009 pandemic H1 and swine-like N2. All viruses replicated to high titres in nasal wash and nasal turbinate samples from inoculated ferrets and transmitted efficiently by direct contact. Only the H3N2 virus transmitted to naïve ferrets via the airborne route. Growth kinetics using a differentiated human bronchial epithelial cell line showed that all four viruses were able to replicate to high titres. Further, the viruses revealed preferential binding to the 2,6-α-silalylated glycans and investigation of the antiviral susceptibility of the viruses revealed that all were sensitive to neuraminidase inhibitors. These findings suggested that these viruses have the potential to infect humans and further underline the need for continued surveillance as well as biological characterization of new influenza A viruses.
  • 机译 人类偏肺病毒的最新疫苗开发
    摘要:Human metapneumovirus (hMPV) and respiratory syncytial virus, its close family member, are two major causes of lower respiratory tract infection in the paediatric population. hMPV is also a common cause of worldwide morbidity and mortality in immunocompromised patients and older adults. Repeated infections occur often, demonstrating a heavy medical burden. However, there is currently no hMPV-specific prevention treatment. This review focuses on the current literature on hMPV vaccine development. We believe that a better understanding of the role(s) of viral proteins in host responses might lead to efficient prophylactic vaccine development.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号