您现在的位置:首页>美国卫生研究院文献>ILAR Journal

期刊信息

  • 期刊名称:

    -

  • 刊频: Quarterly
  • NLM标题: ILAR J
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<1/8>
158条结果
  • 机译 物种身份取代了德克萨斯州和墨西哥各地有关汉坦病毒流行的稀释效应
    摘要:Recent models suggest a relationship exists between community diversity and pathogen prevalence, the proportion of individuals in a population that are infected by a pathogen, with most inferences tied to assemblage structure. Two contrasting outcomes of this relationship have been proposed: the “dilution effect” and the “amplification effect.” Small mammal assemblage structure in disturbed habitats often differs from assemblages in sylvan environments, and hantavirus prevalence is often negatively correlated with habitats containing high species diversity via dilution effect dynamics. As species richness increases, prevalence of infection often is decreased. However, anthropogenic changes to sylvan landscapes have been shown to decrease species richness and/or increase phylogenetic similarities within assemblages. Between January 2011 and January 2016, we captured and tested 2406 individual small mammals for hantavirus antibodies at 20 sites across Texas and México and compared differences in hantavirus seroprevalence, species composition, and assemblage structure between sylvan and disturbed habitats. We found 313 small mammals positive for antibodies against hantaviruses, evincing an overall prevalence of 9.7% across all sites. In total, 40 species of small mammals were identified comprising 2 taxonomic orders (Rodentia and Eulipotyphla). By sampling both habitat types concurrently, we were able to make real-world inferences into the efficacy of dilution effect theory in terms of hantavirus ecology. Our hypothesis predicting greater species richness higher in sylvan habitats compared to disturbed areas was not supported, suggesting the characteristics of assemblage structure do not adhere to current conceptions of species richness negatively influencing prevalence via a dilution effect.
  • 机译 非人类灵长类动物模型和艾滋病毒感染和艾滋病的发病机理的了解
    摘要:Research using nonhuman primates (NHPs) as models for human immunodeficiency virus (HIV) infection and acquired immunodeficiency syndrome (AIDS) has resulted in tremendous achievements not only in the prevention and treatment of HIV, but also in biomedical research more broadly. Once considered a death sentence, HIV infection is now fairly well controlled with combination antiretroviral treatments, almost all of which were first tested for efficacy and safety in nonhuman primates or other laboratory animals. Research in NHP has led to “dogma changing” discoveries in immunology, infectious disease, and even our own genetics. We now know that many of our genes are retroviral remnants, or developed in response to archaic HIV-like retroviral infections. Early studies involving blood from HIV patients and in experiments in cultured tissues contributed to confusion regarding the cause of AIDS and impeded progress in the development of effective interventions. Research on the many retroviruses of different NHP species have broadened our understanding of human immunology and perhaps even our origins and evolution as a species. In combination with recent advances in molecular biology and computational analytics, research in NHPs has unique potential for discoveries that will directly lead to new cures for old human and animal diseases, including HIV/AIDS.
  • 机译 病毒性肝炎的黑猩猩模型:了解免疫反应和治疗病毒性肝炎的进展
    摘要:Chimpanzees (Pan troglodytes) have contributed to diverse fields of biomedical research due to their close genetic relationship to humans and in many instances due to the lack of any other animal model. This review focuses on the contributions of the chimpanzee model to research on hepatitis viruses where chimpanzees represented the only animal model (hepatitis B and C) or the most appropriate animal model (hepatitis A). Research with chimpanzees led to the development of vaccines for HAV and HBV that are used worldwide to protect hundreds of millions from these diseases and, where fully implemented, have provided immunity for entire generations. More recently, chimpanzee research was instrumental in the development of curative therapies for hepatitis C virus infections. Over a span of 40 years, this research would identify the causative agent of NonA,NonB hepatitis, validate the molecular tools for drug discovery, and provide safety and efficacy data on the therapies that now provide a rapid and complete cure of HCV chronic infections. Several cocktails of antivirals are FDA approved that eliminate the virus following 12 weeks of once-per-day oral therapy. This represents the first cure of a chronic viral disease and, once broadly implemented, will dramatically reduce the occurrence of cirrhosis and liver cancer. The recent contributions of chimpanzees to our current understanding of T cell immunity for HCV, development of novel therapeutics for HBV, and the biology of HAV are reviewed. Finally, a perspective is provided on the events leading to the cessation of the use of chimpanzees in research and the future of the chimpanzees previously used to bring about these amazing breakthroughs in human healthcare.
  • 机译 非人类灵长类动物:关于女性生殖,产前发育和妇女健康的基础和应用研究的重要模型
    摘要:The comparative biology of reproduction and development in mammalian species is remarkable. Hence, because of similarities in environmental and neuroendocrine control of the reproductive axis, the cyclic function of the ovary and reproductive tract, establishment and control of the maternal-fetal-placental unit during pregnancy, and reproductive aging from puberty through menopause, nonhuman primates (NHPs) are valuable models for research related to women's reproductive health and its disorders. This chapter provides examples of research over the past 10+ years using Old World monkeys (notably macaque species), baboons, and to a lesser extent New World monkeys (especially marmosets) that contributed to our understanding of the etiology and therapies or prevention of: (1) ovarian disorders, e.g., polycystic ovary syndrome, mitochondrial DNA-based diseases from the oocyte; (2) uterine disorders, for example, endometriosis and uterine transplantation; and (3) pregnancy disorders, for example, preterm labor and delivery, environmental factors. Also, emerging opportunities such as viral (e.g., Zika) induced fetal defects and germline genomic editing to generate valuable primate models of human diseases (e.g., Huntington and muscular dystrophy) are addressed. Although the high costs, specialized resources, and ethical debate challenge the use of primates in biomedical research, their inclusion in fertility and infertility research is vital for continued improvements in women's reproductive health.
  • 机译 大鼠基因组和模型资源
    摘要:Rats remain a major model for studying disease mechanisms and discovery, validation, and testing of new compounds to improve human health. The rat’s value continues to grow as indicated by the more than 1.4 million publications (second to human) at PubMed documenting important discoveries using this model. Advanced sequencing technologies, genome modification techniques, and the development of embryonic stem cell protocols ensure the rat remains an important mammalian model for disease studies. The 2004 release of the reference genome has been followed by the production of complete genomes for more than two dozen individual strains utilizing NextGen sequencing technologies; their analyses have identified over 80 million variants. This explosion in genomic data has been accompanied by the ability to selectively edit the rat genome, leading to hundreds of new strains through multiple technologies. A number of resources have been developed to provide investigators with access to precision rat models, comprehensive datasets, and sophisticated software tools necessary for their research. Those profiled here include the Rat Genome Database, PhenoGen, Gene Editing Rat Resource Center, Rat Resource and Research Center, and the National BioResource Project for the Rat in Japan.
  • 机译 斑马鱼人类疾病模型:在ZFIN上深入了解人类疾病
    摘要:The Zebrafish Model Organism Database (ZFIN; https://zfin.org) is the central resource for genetic, genomic, and phenotypic data for zebrafish (Danio rerio) research. ZFIN continuously assesses trends in zebrafish research, adding new data types and providing data repositories and tools that members of the research community can use to navigate data. The many research advantages and flexibility of manipulation of zebrafish have made them an increasingly attractive animal to model and study human disease.To facilitate disease-related research, ZFIN developed support to provide human disease information as well as annotation of zebrafish models of human disease. Human disease term pages at ZFIN provide information about disease names, synonyms, and references to other databases as well as a list of publications reporting studies of human diseases in which zebrafish were used. Zebrafish orthologs of human genes that are implicated in human disease etiology are routinely studied to provide an understanding of the molecular basis of disease. Therefore, a list of human genes involved in the disease with their corresponding zebrafish ortholog is displayed on the disease page, with links to additional information regarding the genes and existing mutations. Studying human disease often requires the use of models that recapitulate some or all of the pathologies observed in human diseases. Access to information regarding existing and published models can be critical, because they provide a tractable way to gain insight into the phenotypic outcomes of the disease. ZFIN annotates zebrafish models of human disease and supports retrieval of these published models by listing zebrafish models on the disease term page as well as by providing search interfaces and data download files to access the data. The improvements ZFIN has made to annotate, display, and search data related to human disease, especially zebrafish models for disease and disease-associated gene information, should be helpful to researchers and clinicians considering the use of zebrafish to study human disease.
  • 机译 信息学对生物医学基础研究的支持
    摘要:Informatics methodologies exploit computer-assisted techniques to help biomedical researchers manage large amounts of information. In this paper, we focus on the biomedical research literature (MEDLINE). We first provide an overview of some text mining techniques that offer assistance in research by identifying biomedical entities (e.g., genes, substances, and diseases) and relations between them in text.We then discuss Semantic MEDLINE, an application that integrates PubMed document retrieval, concept and relation identification, and visualization, thus enabling a user to explore concepts and relations from within a set of retrieved citations. Semantic MEDLINE provides a roadmap through content and helps users discern patterns in large numbers of retrieved citations. We illustrate its use with an informatics method we call “discovery browsing,” which provides a principled way of navigating through selected aspects of some biomedical research area. The method supports an iterative process that accommodates learning and hypothesis formation in which a user is provided with high level connections before delving into details.As a use case, we examine current developments in basic research on mechanisms of Alzheimer’s disease. Out of the nearly 90 000 citations returned by the PubMed query “Alzheimer’s disease,” discovery browsing led us to 73 citations on sortilin and that disorder. We provide a synopsis of the basic research reported in 15 of these. There is wide-spread consensus among researchers working with a range of animal models and human cells that increased sortilin expression and decreased receptor expression are associated with amyloid beta and/or amyloid precursor protein.
  • 机译 通过严格和透明化加速生物医学发现
    摘要:Difficulties in reproducing published research findings have garnered a lot of press in recent years. As a funder of biomedical research, the National Institutes of Health (NIH) has taken measures to address underlying causes of low reproducibility. Extensive deliberations resulted in a policy, released in 2015, to enhance reproducibility through rigor and transparency. We briefly explain what led to the policy, describe its elements, provide examples and resources for the biomedical research community, and discuss the potential impact of the policy on translatability with a focus on research using animal models. Importantly, while increased attention to rigor and transparency may lead to an increase in the number of laboratory animals used in the near term, it will lead to more efficient and productive use of such resources in the long run. The translational value of animal studies will be improved through more rigorous assessment of experimental variables and data, leading to better assessments of the translational potential of animal models, for the benefit of the research community and society.
  • 机译 非人类灵长类动物研究,以促进视觉科学和预防失明
    摘要:Most primate behavior is dependent on high acuity vision. Optimal visual performance in primates depends heavily upon frontally placed eyes, retinal specializations, and binocular vision. To see an object clearly its image must be placed on or near the fovea of each eye. The oculomotor system is responsible for maintaining precise eye alignment during fixation and generating eye movements to track moving targets. The visual system of nonhuman primates has a similar anatomical organization and functional capability to that of humans. This allows results obtained in nonhuman primates to be applied to humans. The visual and oculomotor systems of primates are immature at birth and sensitive to the quality of binocular visual and eye movement experience during the first months of life. Disruption of postnatal experience can lead to problems in eye alignment (strabismus), amblyopia, unsteady gaze (nystagmus), and defective eye movements. Recent studies in nonhuman primates have begun to discover the neural mechanisms associated with these conditions. In addition, genetic defects that target the retina can lead to blindness. A variety of approaches including gene therapy, stem cell treatment, neuroprosthetics, and optogenetics are currently being used to restore function associated with retinal diseases. Nonhuman primates often provide the best animal model for advancing fundamental knowledge and developing new treatments and cures for blinding diseases.
  • 机译 社会过程的自然存在的非人类灵长类动物模型
    摘要:Human research into psychological processes such as anxiety, depression, or loneliness typically involves accruing cases in which the phenomenon of interest is naturally occurring, and then comparing such a sample with control cases. In contrast, animal research designed to model similar processes to test mechanistic hypotheses typically involves inducing the phenomenon of interest via some exogenously (i.e., human) administered procedure. In the present review, the author proposes that naturally occurring animal models can complement induced models in understanding complex psychological phenomena. Advantages and disadvantages of naturally occurring versus induced models are described, and detailed examples of three naturally occurring models—for loneliness and health, behavioral inhibition and asthma, and social functioning and autism—are described, along with a formal program (the BioBehavioral Assessment program) at the California National Primate Research Center, that is designed to quantify variation in biobehavioral processes in infant rhesus macaques to facilitate development of naturally occurring models. It is argued that, because of the similarity in complex behavioral and psychological processes between macaques and humans, naturally occurring primate models provide a bridge between human studies and induced primate models and have the potential to identify new models for translational research.
  • 机译 21世纪的环境富裕
    摘要:More than a quarter of a century has elapsed since the Animal Welfare Act mandated that research facilities develop and follow a plan to promote the psychological well-being of captive primates. Since passage of this law, considerable effort and resources have been directed to designing environmental enrichment strategies in an effort to improve animal welfare. These plans typically consist of environmental enrichment and socialization efforts. While environmental enhancement has undergone a great deal of improvement in the past 25 years, it should be viewed as a continual work in progress, which takes advantage of emergent and future technologies. In this review, we discuss the objectives of the environmental enhancement plan along with relevant outcome measures, as well as ongoing challenges, costs, and benefits. We then review various enrichment strategies and assess their efficacy in meeting goals and objectives. Finally, we look forward to consider what the future might hold for environmental enrichment of nonhuman primates used in research.
  • 机译 勘误表
    • 作者:
    • 刊名:ILAR Journal
    • 2017年第3期
    摘要:
  • 机译 非人类的灵长类动物和转化研究:进展,机遇和挑战
    摘要:Nonhuman primates (NHPs) are the closest animal models to humans regarding genetics, physiology and behavior. Therefore, NHPs are usually a critical component in translational research projects aimed at developing therapeutics, vaccines, devices or other interventions aimed at preventing, curing or ameliorating human disease. NHPs are often used in conjunction with other animal models, such as rodents, and results obtained using NHPs must often be used as the final criterion for establishing the potential efficacy of a pharmaceutical or vaccine before transition to human clinical trails. In some cases, NHPs may be the only relevant animal models for a particlular translational study. This issue of the ILAR journal brings together, in one place, articles that discuss the use of NHP models for studying human diseases that are highly prevalent and that cause extraordinary human suffering and financial and social burdens. Topics covered in detail include: tuberculosis; viral hepatitis; HIV/AIDS; neurodegenerative disorders; Substance abuse disorders; vision and prevention of blindness; disorder associated with psychosocial processes, such as anxiety, depression and loneliness; cardiovascular disease; metabolic disease, such as obesity and metabolic syndrome; respiratory disease; and female reproduction, prenatal development and women's health. Proper husbandry of NHPs that reduces stress and maintains animal health is critical for the development of NHP models. This issue of the journal includes a review of procedures for environmental enrichment, which helps assure animal health and wellbeing. Taken together, these articles provide detailed reviews of the use of NHP models for translational investigations and discuss successes, limitations, challenges and opportunities associated with this research.
  • 机译 美国的Tick-Borne人畜共患病:对人类健康的持续威胁和新兴威胁
    摘要:In the United States, ticks transmit the greatest diversity of arthropod-borne pathogens and are responsible for the most cases of all vector-borne diseases. In recent decades, the number of reported cases of notifiable tick-borne diseases has steadily increased, geographic distributions of many ticks and tick-borne diseases have expanded, and new tick-borne disease agents have been recognized. In this review, we (1) describe the known disease agents associated with the most commonly human-biting ixodid ticks, (2) review the natural histories of these ticks and their associated pathogens, (3) highlight spatial and temporal changes in vector tick distributions and tick-borne disease occurrence in recent decades, and (4) identify knowledge gaps and barriers to more effective prevention of tick-borne diseases. We describe 12 major tick-borne diseases caused by 15 distinct disease agents that are transmitted by the 8 most commonly human-biting ixodid ticks in the United States. Notably, 40% of these pathogens were described within the last two decades. Our assessment highlights the importance of animal studies to elucidate how tick-borne pathogens are maintained in nature, as well as advances in molecular detection of pathogens which has led to the discovery of several new tick-borne disease agents.
  • 机译 非人类灵长类动物在代谢疾病研究中的应用和重要性:当前领域
    摘要:Obesity and its multiple metabolic sequelae, including type 2 diabetes, cardiovascular disease, and fatty liver disease, are becoming increasingly widespread in both the developed and developing world. There is an urgent need to identify new approaches for the prevention and treatment of these costly and prevalent metabolic conditions. Accomplishing this will require the use of appropriate animal models for preclinical and translational investigations in metabolic disease research. Although studies in rodent models are often useful for target/pathway identification and testing hypotheses, there are important differences in metabolic physiology between rodents and primates, and experimental findings in rodent models have often failed to be successfully translated into new, clinically useful therapeutic modalities in humans. Nonhuman primates represent a valuable and physiologically relevant model that serve as a critical translational bridge between basic studies performed in rodent models and clinical studies in humans. The purpose of this review is to evaluate the evidence, including a number of specific examples, in support of the use of nonhuman primate models in metabolic disease research, as well as some of the disadvantages and limitations involved in the use of nonhuman primates. The evidence taken as a whole indicates that nonhuman primates are and will remain an indispensable resource for evaluating the efficacy and safety of novel therapeutic strategies targeting clinically important metabolic diseases, including dyslipidemia and atherosclerosis, type 2 diabetes, hepatic steatosis, steatohepatitis, and hepatic fibrosis, and potentially the cognitive decline and dementia associated with metabolic dysfunction, prior to taking these therapies into clinical trials in humans.
  • 机译 呼吸系统疾病的非人类灵长类动物模型:过去,现在和未来
    摘要:The respiratory system consists of an integrated network of organs and structures that primarily function for gas exchange. In mammals, oxygen and carbon dioxide are transmitted through a complex respiratory tract, consisting of the nasal passages, pharynx, larynx, and lung. Exposure to ambient air throughout the lifespan imposes vulnerability of the respiratory system to environmental challenges that can contribute toward development of disease. The importance of the respiratory system to human health is supported by statistics from the Centers for Disease Control and Prevention; in 2015, chronic lower respiratory diseases were the third leading cause of death in the United States. In light of the significant mortality associated with respiratory conditions that afflict all ages of the human population, this review will focus on basic and preclinical research conducted in nonhuman primate models of respiratory disease. In comparison with other laboratory animals, the nonhuman primate lung most closely resembles the human lung in structure, physiology, and mucosal immune mechanisms. Studies defining the influence of inhaled microbes, pollutants, or allergens on the nonhuman primate lung have provided insight on disease pathogenesis, with the potential for elucidation of molecular targets leading to new treatment modalities. Vaccine trials in nonhuman primates have been crucial for confirmation of safety and protective efficacy against infectious diseases of the lung in a laboratory animal model that recapitulates pathology observed in humans. In looking to the future, nonhuman primate models of respiratory diseases will continue to be instrumental for translating biomedical research for improvement of human health.
  • 机译 非人类灵长类动物和转化研究—心血管疾病
    摘要:Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the United States. Human epidemiological studies provide challenges for understanding mechanisms that regulate initiation and progression of CVD due to variation in lifestyle, diet, and other environmental factors. Studies describing metabolic and physiologic aspects of CVD, and those investigating genetic and epigenetic mechanisms influencing CVD initiation and progression, have been conducted in multiple Old World nonhuman primate (NHP) species. Major advantages of NHPs as models for understanding CVD are their genetic, metabolic, and physiologic similarities with humans, and the ability to control diet, environment, and breeding. These NHP species are also genetically and phenotypically heterogeneous, providing opportunities to study gene by environment interactions that are not feasible in inbred animal models. Each Old World NHP species included in this review brings unique strengths as models to better understand human CVD. All develop CVD without genetic manipulation providing multiple models to discover genetic variants that influence CVD risk. In addition, as each of these NHP species age, their age-related comorbidities such as dyslipidemia and diabetes are accelerated proportionally 3 to 4 times faster than in humans.In this review, we discuss current CVD-related research in NHPs focusing on selected aspects of CVD for which nonprimate model organism studies have left gaps in our understanding of human disease. We include studies on current knowledge of genetics, epigenetics, calorie restriction, maternal calorie restriction and offspring health, maternal obesity and offspring health, nonalcoholic steatohepatitis and steatosis, Chagas disease, microbiome, stem cells, and prevention of CVD.
  • 机译 非人类灵长类动物神经退行性疾病模型。
    摘要:Alzheimer’s (AD), Huntington’s (HD), and Parkinson’s (PD) disease are age-related neurodegenerative disorders characterized by progressive neuronal cell death. Although each disease has particular pathologies and symptoms, accumulated evidence points to similar mechanisms of neurodegeneration, including inflammation, oxidative stress, and protein aggregation. A significant body of research is ongoing to understand how these pathways affect each other and what ultimately triggers the onset of the disease. Experiments in nonhuman primates (NHPs) account for only 5% of all research in animals. Yet the impact of NHP studies for clinical translation is much greater, especially for neurodegenerative disorders, as NHPs have a complex cognitive and motor functions and highly developed neuroanatomy. New NHP models are emerging to better understand pathology and improve the platform in which to test novel therapies. The goal of this report is to review NHP models of AD, HD, and PD in the context of the current understanding of these diseases and their contribution to the development of novel therapies.
  • 机译 在转化研究中使用非人类灵长类动物的基因组工具
    摘要:Nonhuman primates (NHPs) are important preclinical models for understanding the etiology of human diseases and for developing therapies and vaccines to cure or eliminate disease. Most human diseases have genetic components. Therefore, to be of maximal utility, the NHP species used for translational science should be as well characterized in regard to their genome and transcriptome as possible. This article reviews the current status of genomic information for the five NHP species used most often in translational research: rhesus macaque, cynomolgus macaque, vervet (African green) monkey, baboon, and marmoset NHP. These species have published whole genome sequences (with the exception of the baboon) and relatively well-characterized transcriptomes. Some have also been characterized in regard to specific genetic loci that are particularly related to translational concerns, such as the major histocompatability complex and the cytochrome P40 genes. Genomic resources to aid in stratifying captive populations in regard to genetic and phenotypic characteristics have been developed as an aid to enhancing reproducibility and facilitating more efficient use of animals. Taken together, the current genomic resources and numerous studies currently underway to improve them should enhance the value of NHPs as preclinical models of human disease.
  • 机译 建立评估病媒传染病病原体水库的生态框架:美国南部克氏锥虫野生生物水库
    摘要:Wildlife species are critical for both feeding vectors and serving as reservoirs of zoonotic vector-borne pathogens. Transmission pathways leading to disease in humans or other target taxa might be better understood and managed given a complete understanding of the relative importance of different reservoir species in nature. Using the conceptual framework of “reservoir potential,” which considers elements of both reservoir competence and vector-host contact, we review the wildlife reservoirs of Trypanosoma cruzi in the southern United States, where many species of triatomine vectors occur and wildlife maintain enzootic cycles that create a risk of spillover to humans, domestic dogs, and captive nonhuman primates that may develop Chagas disease. We reviewed 77 published reports of T. cruzi infection in at least 26 wildlife species across 15 southern states. Among the most well-studied and highly infected reservoirs are raccoon (Procyon lotor), woodrat (Neotoma spp.), and opossum (Didelphis virginiana), with aggregate overall infection prevalences of 36.4, 34.7, and 22.9%, respectively. Just over 60% of studies utilized methods from which an infectiousness index could be generated and show that raccoons and striped skunk (Mephitis mephitis) are among the most infectious wildlife hosts. Triatomine-host contact has sparsely been quantified in the southern United States, but 18 of the 24 host species previously identified to have been fed upon by triatomines are wildlife. Future studies to parameterize the reservoir potential model, especially to quantify wildlife infectiousness, vector-host contact, and the epidemiological importance of parasite strains maintained by wildlife, could open new doors for managing enzootic cycles and reducing T. cruzi spillover risk.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号