首页> 美国卫生研究院文献>Frontiers in Neuroscience >Design and Development of Microscale Thickness Shear Mode (TSM) Resonators for Sensing Neuronal Adhesion
【2h】

Design and Development of Microscale Thickness Shear Mode (TSM) Resonators for Sensing Neuronal Adhesion

机译:微型厚度剪切模式(TSM)共振器的设计和开发,用于感知神经元粘附。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The overall goal of this study is to develop thickness shear mode (TSM) resonators for the real-time, label-free, non-destructive sensing of biological adhesion events in small populations (hundreds) of neurons, in a cell culture medium and subsequently in vivo in the future. Such measurements will enable the discovery of the role of biomechanical events in neuronal function and dysfunction. Conventional TSM resonators have been used for chemical sensing and biosensing applications in media, with hundreds of thousands of cells in culture. However, the sensitivity and spatial resolution of conventional TSM devices need to be further enhanced for sensing smaller cell populations or molecules of interest. In this report, we focus on key challenges such as eliminating inharmonics in solution and maximizing Q-factor while simultaneously miniaturizing the active sensing (electrode) area to make them suitable for small populations of cells. We used theoretical expressions for sensitivity and electrode area of TSM sensors operating in liquid. As a validation of the above design effort, we fabricated prototype TSM sensors with resonant frequencies of 42, 47, 75, and 90 MHz and characterized their performance in liquid using electrode diameters of 150, 200, 400, 800, and 1,200 μm and electrode thicknesses of 33 and 230 nm. We validated a candidate TSM resonator with the highest sensitivity and Q-factor for real-time monitoring of the adhesion of cortical neurons. We reduced the size of the sensing area to 150–400 μm for TSM devices, improving the spatial resolution by monitoring few 100–1,000s of neurons. Finally, we modified the electrode surface with single-walled carbon nanotubes (SWCNT) to further enhance adhesion and sensitivity of the TSM sensor to adhering neurons (Marx, ).
机译:这项研究的总体目标是开发厚度剪切模式(TSM)共振器,以实时,无标签,无损地感测细胞培养基中少量(数百个)神经元种群中的生物粘附事件。将来在体内。这样的测量将使得能够发现生物力学事件在神经元功能和功能障碍中的作用。常规的TSM谐振器已用于培养基中具有数十万个细胞的化学传感和生物传感应用。然而,常规TSM设备的灵敏度和空间分辨率需要进一步增强以感测较小的细胞群体或感兴趣的分子。在本报告中,我们重点关注关键挑战,例如消除溶液中的谐波,并最大化Q因子,同时最小化有源感应(电极)面积,使其适合小细胞群体。我们使用理论表达式来表示在液体中运行的TSM传感器的灵敏度和电极面积。作为上述设计工作的验证,我们制造了谐振频率分别为42、47、75和90 MHz的TSM原型传感器,并使用直径为150、200、400、800和1,200μm的电极和电极表征了其在液体中的性能厚度分别为33和230 nm。我们验证了具有最高灵敏度和Q因子的候选TSM谐振器,用于实时监测皮层神经元的粘附。对于TSM设备,我们将感应区域的尺寸减小到150-400μm,通过监视少量100-1,000s神经元来提高空间分辨率。最后,我们用单壁碳纳米管(SWCNT)修饰了电极表面,以进一步增强TSM传感器对粘附的神经元的粘附性和敏感性(马克思,)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号