您现在的位置:首页>美国卫生研究院文献>Frontiers in Microbiology

期刊信息

  • 期刊名称:

    -

  • 刊频:
  • NLM标题:
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<5/20>
4484条结果
  • 机译 模拟Wolbachia对水平传播病毒感染动力学的间接影响
    摘要:Intracellular bacteria of the genus Wolbachia are widely distributed in arthropods. There is growing empirical evidence that Wolbachia directly interacts with viruses and other parasites inside the arthropod host, sometimes resulting in low or no pathogen replication. Previous theoretical studies showed that this direct effect of Wolbachia can result in a reduced virus prevalence (within the population), suggesting that Wolbachia could be used in the biological control of vector-borne diseases (e.g., dengue fever). However, Wolbachia might also indirectly affect virus dynamics because Wolbachia-induced reproductive phenotypes (cytoplasmic incompatibility or male killing) increase the larval mortality of hosts and thus alter the age structure of populations. We investigated this indirect effect using mathematical models with overlapping generations, and found the results to depend strongly on the host's life history. In general, the indirect effect can result in two different outcomes: (1) reduced virus prevalence and virus invasion ability, and (2) increased virus prevalence and virus invasion ability. The former occurs for host species with larval competition and undercompensation, the latter for hosts with either adult competition or larval competition and overcompensation. These findings suggest that the effect of Wolbachia on a specific virus is sensitive to the host's life history. We discuss the results with respect to biocontrol programs using Wolbachia.
  • 机译 长期监测揭示了富营养化湖泊中碳-氮代谢是产生微囊藻毒素的关键
    摘要:The environmental drivers contributing to cyanobacterial dominance in aquatic systems have been extensively studied. However, understanding of toxic vs. non-toxic cyanobacterial population dynamics and the mechanisms regulating cyanotoxin production remain elusive, both physiologically and ecologically. One reason is the disconnect between laboratory and field-based studies. Here, we combined 3 years of temporal data, including microcystin (MC) concentrations, 16 years of long-term ecological research, and 10 years of molecular data to investigate the potential factors leading to the selection of toxic Microcystis and MC production. Our analysis revealed that nitrogen (N) speciation and inorganic carbon (C) availability might be important drivers of Microcystis population dynamics and that an imbalance in cellular C: N ratios may trigger MC production. More specifically, precipitous declines in ammonium concentrations lead to a transitional period of N stress, even in the presence of high nitrate concentrations, that we call the “toxic phase.” Following the toxic phase, temperature and cyanobacterial abundance remained elevated but MC concentrations drastically declined. Increases in ammonium due to lake turnover may have led to down regulation of MC synthesis or a shift in the community from toxic to non-toxic species. While total phosphorus (P) to total N ratios were relatively low over the time-series, MC concentrations were highest when total N to total P ratios were also highest. Similarly, high C: N ratios were also strongly correlated to the toxic phase. We propose a metabolic model that corroborates molecular studies and reflects our ecological observations that C and N metabolism may regulate MC production physiologically and ecologically. In particular, we hypothesize that an imbalance between 2-oxoglutarate and ammonium in the cell regulates MC synthesis in the environment.
  • 机译 评估化学计量和二氧化碳固定的效率以及减少的硫氧化
    摘要:Chemolithoautotrophic sulfur oxidizing bacteria (SOB) couple the oxidation of reduced sulfur compounds to the production of biomass. Their role in the cycling of carbon, sulfur, oxygen, and nitrogen is, however, difficult to quantify due to the complexity of sulfur oxidation pathways. We describe a generic theoretical framework for linking the stoichiometry and energy conservation efficiency of autotrophic sulfur oxidation while accounting for the partitioning of the reduced sulfur pool between the energy generating and energy conserving steps as well as between the main possible products (sulfate vs. zero-valent sulfur). Using this framework, we show that the energy conservation efficiency varies widely among SOB with no apparent relationship to their phylogeny. Aerobic SOB equipped with reverse dissimilatory sulfite reductase tend to have higher efficiency than those relying on the complete Sox pathway, whereas for anaerobic SOB the presence of membrane-bound, as opposed to periplasmic, nitrate reductase systems appears to be linked to higher efficiency. We employ the framework to also show how limited rate measurements can be used to estimate the primary productivity of SOB without the knowledge of the sulfate-to-zero-valent-sulfur production ratio. Finally, we discuss how the framework can help researchers gain new insights into the activity of SOB and their niches.
  • 机译 贫营养环境中水生细菌拮抗活性代价的理论分析
    摘要:Many strains of bacteria produce antagonistic substances that restrain the growth of others, and potentially give them a competitive advantage. These substances are commonly released to the surrounding environment, involving metabolic costs in terms of energy and nutrients. The rate at which these molecules need to be produced to maintain a certain amount of them close to the producing cell before they are diluted into the environment has not been explored so far. To understand the potential cost of production of antagonistic substances in water environments, we used two different theoretical approaches. Using a probabilistic model, we determined the rate at which a cell needs to produce individual molecules in order to keep on average a single molecule in its vicinity at all times. For this minimum protection, a cell would need to invest 3.92 × 10−22 kg s−1 of organic matter, which is 9 orders of magnitude lower than the estimated expense for growth. Next, we used a continuous model, based on Fick's laws, to explore the production rate needed to sustain minimum inhibitory concentrations around a cell, which would provide much more protection from competitors. In this scenario, cells would need to invest 1.20 × 10−11 kg s−1, which is 2 orders of magnitude higher than the estimated expense for growth, and thus not sustainable. We hypothesize that the production of antimicrobial compounds by bacteria in aquatic environments lies between these two extremes.
  • 机译 幽门螺杆菌嗜中性粒细胞激活蛋白:潜在的Treg调节剂抑制过敏性哮喘?
    摘要:The ultimate aim of the immune system is to eliminate pathogens without being harmful to the host. But what if eliminating the pathogen in itself is discomforting for the host? One such emerging case is of Helicobacter pylori. Modern medicine, infantile vaccination, and ultra-hygienic conditions have led to progressive disappearance of H. pylori in different parts of the world. However, the adversities caused by H. pylori’s absence are much larger than those caused by its presence. Asthma is rising as an epidemic in last few decades and several reports suggest an inverse-relationship between H. pylori’s persistence and early-life onset asthma. Regulatory T cells play an important role in both the cases. This is further supported by experiments on mouse-models. Hence, need of the hour is to discern the relationship between H. pylori and its host and eliminating its negative impacts without disturbing our indigenous microbiota. To resolve whether H. pylori is a pathogen or an amphibiont is another important side. This review explores the biological basis of H. pylori-induced priming of immune system offering resistance to childhood-onset asthma. HP-NAP–Tregs interaction has been predicted using molecular docking and dynamic simulation.
  • 机译 限制修改系统作为多样性的引擎
    摘要:Restriction modification (RM) systems provide protection against a broad spectrum of phages. However, the likelihood of a phage permanently bypassing this can be as high as 0.1 per infection (Korona et al., ) which makes for a relatively weak defense. Here we argue that, apart from providing such transient defenses, RM systems can facilitate long-term coexistence of many bacterial strains. We show that this diversity can be as large as the burst size of the phage but no larger—a curious correspondence between a number at the level of species and another number at the level of individuals. Such a highly diverse and stably coexisting ecosystem is robust to substantial variation in both bacterial growth rates and strength of their RM systems, which might be one reason why quite weak RM systems exist in the wild.
  • 机译 向多细胞性过渡过程中细胞分化的发展:动态建模方法
    摘要:Multicellularity has emerged and continues to emerge in a variety of lineages and under diverse environmental conditions. In order to attain individuality and integration, multicellular organisms must exhibit spatial cell differentiation, which in turn allows cell aggregates to robustly generate traits and behaviors at the multicellular level. Nevertheless, the mechanisms that may lead to the development of cellular differentiation and patterning in emerging multicellular organisms remain unclear. We briefly review two conceptual frameworks that have addressed this issue: the cooperation-defection framework and the dynamical patterning modules (DPMs) framework. Then, situating ourselves in the DPM formalism first put forward by S. A. Newman and collaborators, we state a hypothesis for cell differentiation and arrangement in cellular masses of emerging multicellular organisms. Our hypothesis is based on the role of the generic cell-to-cell communication and adhesion patterning mechanisms, which are two fundamental mechanisms for the evolution of multicellularity, and whose molecules seem to be well-conserved in extant multicellular organisms and their unicellular relatives. We review some fundamental ideas underlying this hypothesis and contrast them with empirical and theoretical evidence currently available. Next, we use a mathematical model to illustrate how the mechanisms and assumptions considered in the hypothesis we postulate may render stereotypical arrangements of differentiated cells in an emerging cellular aggregate and may contribute to the variation and recreation of multicellular phenotypes. Finally, we discuss the potential implications of our approach and compare them to those entailed by the cooperation-defection framework in the study of cell differentiation in the transition to multicellularity.
  • 机译 瘤胃丁酸牛中的电子传递磷酸化:空前的ATP产量,葡萄糖发酵成丁酸盐
    摘要:From a genomic analysis of rumen butyrivibrios (Butyrivibrio and Pseudobutyrivibrio sp.), we have re-evaluated the contribution of electron transport phosphorylation (ETP) to ATP formation in this group. This group is unique in that most (76%) genomes were predicted to possess genes for both Ech and Rnf transmembrane ion pumps. These pumps act in concert with the NifJ and Bcd-Etf to form a electrochemical potential (ΔμH+ and ΔμNa+), which drives ATP synthesis by ETP. Of the 62 total butyrivibrio genomes currently available from the Hungate 1000 project, all 62 were predicted to possess NifJ, which reduces oxidized ferredoxin (Fdox) during pyruvate conversion to acetyl-CoA. All 62 possessed all subunits of Bcd-Etf, which reduces Fdox and oxidizes reduced NAD during crotonyl-CoA reduction. Additionally, 61 genomes possessed all subunits of the Rnf, which generates ΔμH+ or ΔμNa+ from oxidation of reduced Fd (Fdred) and reduction of oxidized NAD. Further, 47 genomes possessed all six subunits of the Ech, which generates ΔμH+ from oxidation of Fdred. For glucose fermentation to butyrate and H2, the electrochemical potential established should drive synthesis of ∼1.5 ATP by the F0F1-ATP synthase (possessed by all 62 genomes). The total yield is ∼4.5 ATP/glucose after accounting for three ATP formed by classic substrate-level phosphorylation, and it is one the highest yields for any glucose fermentation. The yield was the same when unsaturated fatty acid bonds, not H+, served as the electron acceptor (as during biohydrogenation). Possession of both Ech and Rnf had been previously documented in only a few sulfate-reducers, was rare in other rumen prokaryotic genomes in our analysis, and may confer an energetic advantage to rumen butyrivibrios. This unique energy conservation system might enhance the butyrivibrios’ ability to overcome growth inhibition by unsaturated fatty acids, as postulated herein.
  • 机译 细菌为何通过群体感应来调节公共物品?-成本和收益函数的形状如何确定最优调节的形式
    摘要:Many bacteria secrete compounds which act as public goods. Such compounds are often under quorum sensing (QS) regulation, yet it is not understood exactly when bacteria may gain from having a public good under QS regulation. Here, we show that the optimal public good production rate per cell as a function of population size (the optimal production curve, OPC) depends crucially on the cost and benefit functions of the public good and that the OPC will fall into one of two categories: Either it is continuous or it jumps from zero discontinuously at a critical population size. If, e.g., the public good has accelerating returns and linear cost, then the OPC is discontinuous and the best strategy thus to ramp up production sharply at a precise population size. By using the example of public goods with accelerating and diminishing returns (and linear cost) we are able to determine how the two different categories of OPSs can best be matched by production regulated through a QS signal feeding back on its own production. We find that the optimal QS parameters are different for the two categories and specifically that public goods which provide accelerating returns, call for stronger positive signal feedback.
  • 机译 限制将二氢结合到电子水槽中,以替代瘤胃发酵中甲烷生成。
    摘要:Research is being conducted with the objective of decreasing methane (CH4) production in the rumen, as methane emissions from ruminants are environmentally damaging and a loss of digestible energy to ruminants. Inhibiting ruminal methanogenesis generally results in accumulation of dihydrogen (H2), which is energetically inefficient and can inhibit fermentation. It would be nutritionally beneficial to incorporate accumulated H2 into propionate or butyrate production, or reductive acetogenesis. The objective of this analysis was to examine three possible physicochemical limitations to the incorporation of accumulated H2 into propionate and butyrate production, and reductive acetogenesis, in methanogenesis-inhibited ruminal batch and continuous cultures: (i) Thermodynamics; (ii) Enzyme kinetics; (iii) Substrate kinetics. Batch (N = 109) and continuous (N = 43) culture databases of experiments with at least 50% inhibition in CH4 production were used in this meta-analysis. Incorporation of accumulated H2 into propionate production and reductive acetogenesis seemed to be thermodynamically feasible but quite close to equilibrium, whereas this was less clear for butyrate. With regard to enzyme kinetics, it was speculated that hydrogenases of ruminal microorganisms may have evolved toward high-affinity and low maximal velocity to compete for traces of H2, rather than for high pressure accumulated H2. Responses so far obtained to the addition of propionate production intermediates do not allow distinguishing between thermodynamic and substrate kinetics control.
  • 机译 中上层微生物生态系统的分形假设—简单的生态原理会导致中上层微生物食物网中的自相似复杂性吗?
    摘要:Trophic interactions are highly complex and modern sequencing techniques reveal enormous biodiversity across multiple scales in marine microbial communities. Within the chemically and physically relatively homogeneous pelagic environment, this calls for an explanation beyond spatial and temporal heterogeneity. Based on observations of simple parasite-host and predator-prey interactions occurring at different trophic levels and levels of phylogenetic resolution, we present a theoretical perspective on this enormous biodiversity, discussing in particular self-similar aspects of pelagic microbial food web organization. Fractal methods have been used to describe a variety of natural phenomena, with studies of habitat structures being an application in ecology. In contrast to mathematical fractals where pattern generating rules are readily known, however, identifying mechanisms that lead to natural fractals is not straight-forward. Here we put forward the hypothesis that trophic interactions between pelagic microbes may be organized in a fractal-like manner, with the emergent network resembling the structure of the Sierpinski triangle. We discuss a mechanism that could be underlying the formation of repeated patterns at different trophic levels and discuss how this may help understand characteristic biomass size-spectra that hint at scale-invariant properties of the pelagic environment. If the idea of simple underlying principles leading to a fractal-like organization of the pelagic food web could be formalized, this would extend an ecologists mindset on how biological complexity could be accounted for. It may furthermore benefit ecosystem modeling by facilitating adequate model resolution across multiple scales.
  • 机译 造血器官:寄主之间和内部的Wolbachia传播的基石
    摘要:Wolbachia is an intracellular α-proteobacterium which is transmitted vertically from mother to offspring but also frequently switches horizontally from one host to another. Our hypothesis is based on the role of immune cells and the organs that produce them, the hematopoietic organs (HOs), as primordial niches for the propagation of Wolbachia via hemocytes both (i) within hosts: to initiate and maintain the systemic infection and (ii) between hosts: to promote both vertical and horizontal transmission of Wolbachia. Therefore, we review some fundamental ideas underlying this hypothesis and go further with new empirical data that lead to a first close-up analysis of the potential role of HOs in Wolbachia propagation. The monitoring of the first steps of Wolbachia infection in horizontally infected host organs by transmission electron microscopy and qPCR suggests that (i) HOs are colonized early and extensively as soon as they are in contact with Wolbachia which find in these cells a favorable niche to multiply and (ii) infected HOs which expel hemocytes all lifelong can generate and maintain a systemic infection that could contribute to increase both vertical and horizontal propagation of these symbionts.
  • 机译 铁的讽刺–生物氧化铁作为海洋的铁源
    • 作者:David Emerson
    • 刊名:Frontiers in Microbiology
    • 2020年第期
    摘要:Primary productivity in at least a third of the sunlit open ocean is thought to be iron-limited. Primary sources of dissolved iron (dFe) to the ocean are hydrothermal venting, flux from the sediments along continental margins, and airborne dust. This article provides a general review of sources of hydrothermal and sedimentary iron to the ocean, and speculates upon the role that iron-cycling microbes play in controlling iron dynamics from these sources. Special attention is paid to iron-oxidizing bacteria (FeOB) that live by oxidizing iron and producing biogenic iron oxides as waste products. The presence and ubiquity of FeOB both at hydrothermal systems and in sediments is only beginning to be appreciated. The biogenic oxides they produce have unique properties that could contribute significantly to the dynamics of dFe in the ocean. Changes in the physical and chemical characteristics of the ocean due to climate change and ocean acidification will undoubtedly impact the microbial iron cycle. A better understanding of the contemporary role of microbes in the iron cycle will help in predicting how these changes could ultimately influence marine primary productivity.
  • 机译 电脑分析表明埃博拉病毒与细胞外基质之间存在相互作用
    摘要:The worst Ebola virus (EV) outbreak in history has hit Liberia, Sierra Leone and Guinea hardest and the trend lines in this crisis are grave, and now represents a global public health threat concern. Limited therapeutic and/or prophylactic options are available for people suffering from Ebola virus disease (EVD) and further complicate the situation. Previous studies suggested that the EV glycoprotein (GP) is the main determinant causing structural damage of endothelial cells that triggers the hemorrhagic diathesis, but molecular mechanisms underlying this phenomenon remains elusive. Using the informational spectrum method (ISM), a virtual spectroscopy method for analysis of the protein-protein interactions, the interaction of GP with endothelial extracellular matrix (ECM) was investigated. Presented results of this in silico study suggest that Elastin Microfibril Interface Located Proteins (EMILINs) are involved in interaction between GP and ECM. This finding could contribute to a better understanding of EV/endothelium interaction and its role in pathogenesis, prevention and therapy of EVD.
  • 机译 耐药结核可以通过分枝杆菌散布的重复单位基因座预测
    摘要:It is unknown whether MIRU-VNTR (Mycobacterial Interspersed Repetitive Unit-Variable Number of Tandem Repeat) is associated with drug resistance of Mycobacterium tuberculosis. The purpose of this study was to explore the ability of 24 MIRU loci to predict the drug resistance of Isoniazid (INH), Rifampicin (RFP), Streptomycin (SM), Ethambutol (EMB) and Pyrazinamide (PZA). We collected the drug resistance and MIRU loci information of 109 strains of M. tuberculosis from an open database. The results of multivariate logistic regression showed that the VNTR polymorphism of MTUB04 was related to INH resistance [odds ratio (OR) = 2.82, P = 0.00], RFP resistance (OR = 1.91, P = 0.02), SM resistance (OR = 1.98, P = 0.01) and EMB resistance (OR = 1.95, P = 0.03). MIRU40 was associated with INH resistance (OR = 2.22, P = 0.00). MTUB21 was connected with INH resistance (OR = 1.63, P = 0.02) and SM resistance (OR = 1.69, P = 0.01). MIRU26 was correlated with SM resistance (OR = 1.52, P = 0.04). MIRU39 was associated with EMB resistance (OR = 4.07, P = 0.02). The prediction power of MIRU loci were 0.84, 0.70, 0.85, and 0.74 respectively for INH (predicted by MTUB04, MIRU20, and MTUB21), RFP (predicted by MTUB04), SM (predicted by MTUB21 and MIRU26) and EMB (MTUB04 and MIRU39) through ROC analysis. Our results showed that MIRU loci were related to anti-tuberculosis drug and could predict the drug resistance of tuberculosis.
  • 机译 微生物细胞混合群中单个微生物基因组的基于单基因的区分
    摘要:Recent progress in environmental microbiology has revealed vast populations of microbes in any given habitat that cannot be detected by conventional culturing strategies. The use of sensitive genetic detection methods such as CARD-FISH and in situ PCR have been limited by the cell wall permeabilization requirement that cannot be performed similarly on all cell types without lysing some and leaving some nonpermeabilized. Furthermore, the detection of low copy targets such as genes present in single copies in the microbial genomes, has remained problematic. We describe an emulsion-based procedure to trap individual microbial cells into picoliter-volume polyacrylamide droplets that provide a rigid support for genetic material and therefore allow complete degradation of cellular material to expose the individual genomes. The polyacrylamide droplets are subsequently converted into picoliter-scale reactors for genome amplification. The amplified genomes are labeled based on the presence of a target gene and differentiated from those that do not contain the gene by flow cytometry. Using the Escherichia coli strains XL1 and MC1061, which differ with respect to the presence (XL1), or absence (MC1061) of a single copy of a tetracycline resistance gene per genome, we demonstrate that XL1 genomes present at 0.1% of MC1061 genomes can be differentiated using this method. Using a spiked sediment microbial sample, we demonstrate that the method is applicable to highly complex environmental microbial communities as a target gene-based screen for individual microbes. The method provides a novel tool for enumerating functional cell populations in complex microbial communities. We envision that the method could be optimized for fluorescence-activated cell sorting to enrich genetic material of interest from complex environmental samples.
  • 机译 荧光原位杂交和顺序催化的报道分子沉积(2C-FISH)用于淡水超微细菌的流式细胞仪分选
    摘要:Flow cytometric sorting is a powerful tool to physically separate cells within mixed microbial communities. If combined with phylogenetic staining (fluorescence in situ hybridization, FISH) it allows to specifically sort defined genotypic microbial populations from complex natural samples. However, the targeted enrichment of freshwater ultramicrobacteria, such as members of the LD12 clade of Alphaproteobacteria (SAR11-IIIb), is still challenging. Current FISH protocols, even in combination with signal amplification by catalyzed reporter deposition (CARD), are not sufficiently sensitive for the distinction of these bacteria from background noise by flow cytometry, presumably due to their low ribosome content and small cell sizes. We, therefore, modified a CARD based flow sorting protocol with the aim of increasing its sensitivity to a level sufficient for ultramicrobacteria. This was achieved by a second signal amplification step mediated by horseradish peroxidase labeled antibodies targeted to the fluorophores that were previously deposited by CARD-FISH staining. The protocol was tested on samples from an oligo-mesotrophic lake. Ultramicrobacteria affiliated with LD12 Alphaproteobacteria could be successfully sorted to high purity by flow cytometry. The ratios of median fluorescence signal to background ranged around 20, and hybridization rates determined by flow cytometry were comparable to those obtained by fluorescence microscopy. Potential downstream applications of our modified cell staining approach range from the analysis of microdiversity within 16S rRNA-defined populations to that of functional properties, such as the taxon-specific incorporation rates of organic substrates.
  • 机译 Ff纳米,源自Ff(f1,fd或M13)丝状噬菌体的短功能化纳米棒
    摘要:F-specific filamentous phage of Escherichia coli (Ff: f1, M13, or fd) are long thin filaments (860 nm × 6 nm). They have been a major workhorse in display technologies and bionanotechnology; however, some applications are limited by the high length-to-diameter ratio of Ff. Furthermore, use of functionalized Ff outside of laboratory containment is in part hampered by the fact that they are genetically modified viruses. We have now developed a system for production and purification of very short functionalized Ff-phage-derived nanorods, named Ff-nano, that are only 50 nm in length. In contrast to standard Ff-derived vectors that replicate in E. coli and contain antibiotic-resistance genes, Ff-nano are protein-DNA complexes that cannot replicate on their own and do not contain any coding sequences. These nanorods show an increased resistance to heating at 70C in 1% SDS in comparison to the full-length Ff phage of the same coat composition. We demonstrate that functionalized Ff-nano particles are suitable for application as detection particles in sensitive and quantitative “dipstick” lateral flow diagnostic assay for human plasma fibronectin.
  • 机译 多维指标,用于估计元基因组中的噬菌体丰度,分布,基因密度和序列覆盖率
    摘要:Phages are the most abundant biological entities on Earth and play major ecological roles, yet the current sequenced phage genomes do not adequately represent their diversity, and little is known about the abundance and distribution of these sequenced genomes in nature. Although the study of phage ecology has benefited tremendously from the emergence of metagenomic sequencing, a systematic survey of phage genes and genomes in various ecosystems is still lacking, and fundamental questions about phage biology, lifestyle, and ecology remain unanswered. To address these questions and improve comparative analysis of phages in different metagenomes, we screened a core set of publicly available metagenomic samples for sequences related to completely sequenced phages using the web tool, Phage Eco-Locator. We then adopted and deployed an array of mathematical and statistical metrics for a multidimensional estimation of the abundance and distribution of phage genes and genomes in various ecosystems. Experiments using those metrics individually showed their usefulness in emphasizing the pervasive, yet uneven, distribution of known phage sequences in environmental metagenomes. Using these metrics in combination allowed us to resolve phage genomes into clusters that correlated with their genotypes and taxonomic classes as well as their ecological properties. We propose adding this set of metrics to current metaviromic analysis pipelines, where they can provide insight regarding phage mosaicism, habitat specificity, and evolution.
  • 机译 提取DNA和RNA以及从各种环境样品类型中分离DNA池的模块化方法
    摘要:A method for the extraction of nucleic acids from a wide range of environmental samples was developed. This method consists of several modules, which can be individually modified to maximize yields in extractions of DNA and RNA or separations of DNA pools. Modules were designed based on elaborate tests, in which permutations of all nucleic acid extraction steps were compared. The final modular protocol is suitable for extractions from igneous rock, air, water, and sediments. Sediments range from high-biomass, organic rich coastal samples to samples from the most oligotrophic region of the world's oceans and the deepest borehole ever studied by scientific ocean drilling. Extraction yields of DNA and RNA are higher than with widely used commercial kits, indicating an advantage to optimizing extraction procedures to match specific sample characteristics. The ability to separate soluble extracellular DNA pools without cell lysis from intracellular and particle-complexed DNA pools may enable new insights into the cycling and preservation of DNA in environmental samples in the future. A general protocol is outlined, along with recommendations for optimizing this general protocol for specific sample types and research goals.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号