您现在的位置:首页>美国卫生研究院文献>FEMS Yeast Research

期刊信息

  • 期刊名称:

    -

  • 刊频: Quarterly
  • NLM标题: FEMS Yeast Res
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<6/10>
188条结果
  • 机译 不对称细胞分裂在酿酒酵母寿命控制中的作用
    摘要:Aging determinants are asymmetrically distributed during cell division in S. cerevisiae, which leads to production of an immaculate, age-free daughter cell. During this process, damaged components are sequestered and retained in the mother cell, and higher functioning organelles and rejuvenating factors are transported to and/or enriched in the bud. Here, we will describe the key quality control mechanisms in budding yeast that contribute to asymmetric cell division of aging determinants including mitochondria, endoplasmic reticulum (ER), vacuoles, extrachromosomal rDNA circles (ERCs), and protein aggregates.
  • 机译 L-二羟苯丙氨酸可通过Trichosporon属的成员诱导黑色素的产生
    摘要:Melanization of members of the genus Trichosporon is poorly described. In the present study six strains, including two clinical isolates, from four different species (T. asahii, T. asteroides, T. inkin, and T. mucoides) were grown in culture media with or without L-dihydroxyphenilalanine (L-DOPA). Each strain produced a brownish pigment compatible with melanin when cultured in presence of L-DOPA, suggesting that these species are able to produce eumelanin. L-tyrosine was not able to elicit any type of pigment production on cultures. Since eumelanin is produced by several fungi during parasitism, this pigment may contribute to Trichosporon virulence.
  • 机译 米尔贝霉素A4肟作为光滑念珠菌中唑转运的探针
    摘要:Azole resistance in Candida glabrata, a pathogenic yeast, has prompted studies of compounds that have therapeutic potential by reversing azole resistance. Milbemycin A4 oxime blocked azole efflux and enhanced azole susceptibility four-fold in 28 clinical isolates of C. glabrata. Specificity of the milbemycin A4 oxime effect depended on the drug transporter and the substrate being effluxed. The major effect of milbemycin A4 oxime was inhibition of azole and rhodamine 6G efflux by the ATP-Binding Cassette (ABC) transporters CgCDR1 and PDH1. Milbemycin A4 oxime effect did not extend to oligomycin, transported by the ABC transporter YOR1 or to benomyl, transported by the Major Facilitator Superfamily transporter, CgFLR1. Milbemycin A4 oxime did not suppress transcription of CgCDR1 but increased CgCDR1 expression 126-fold. Selectivity of the effect is compatible with the concept that milbemycin A4 oxime may interact directly with a one or more drug-binding sites of the major azole transporters.
  • 机译 酵母为何,何时以及如何发展酒精发酵?
    摘要:The origin of modern fruits brought to microbial communities an abundant source of rich food based on simple sugars. Yeasts, especially Saccharomyces cerevisiae, usually become the predominant group in these niches. One of the most prominent and unique features and likely a winning trait of these yeasts is their ability to rapidly convert sugars to ethanol at both anaerobic and aerobic conditions. Why, when, and how did yeasts remodel their carbon metabolism to be able to accumulate ethanol under aerobic conditions and at the expense of decreasing biomass production? We hereby review the recent data on the carbon metabolism in Saccharomycetaceae species and attempt to reconstruct the ancient environment, which could promote the evolution of alcoholic fermentation. We speculate that the first step toward the so-called fermentative lifestyle was the exploration of anaerobic niches resulting in an increased metabolic capacity to degrade sugar to ethanol. The strengthened glycolytic flow had in parallel a beneficial effect on the microbial competition outcome and later evolved as a “new” tool promoting the yeast competition ability under aerobic conditions. The basic aerobic alcoholic fermentation ability was subsequently “upgraded” in several lineages by evolving additional regulatory steps, such as glucose repression in the S. cerevisiae clade, to achieve a more precise metabolic control.
  • 机译 分泌和丝状化是由白色念珠菌t-SNAREs Sso2p和Sec9p介导的
    摘要:To study the role of late secretion in Candida albicans pathogenesis, we created conditional mutant C. albicans strains in which the t-SNARE-encoding genes SSO2 or SEC9 were placed under the control of a tetracycline-regulated promoter. In repressing conditions, C. albicans tetR-SSO2 and tetR-SEC9 mutant strains were defective in cytokinesis and secretion of aspartyl proteases and lipases. The mutant strains also exhibited a defect in filamentation compared to controls, and thus we followed the fate of the C. albicans Spitzenkörper, an assembly of secretory vesicles thought to act as a vesicle-supply center for the growing hyphae. In the absence of Ca Sso2p, the Spitzenkörper dissipated within 5 hours and thin-section electron microscopy revealed an accumulation of secretory vesicles. Moreover, the hyphal tip developed into a globular yeast-like structure rather than maintaining a typical narrow hyphae. These studies indicate that late secretory t-SNARE proteins in C. albicans are required for fundamental cellular processes and contribute to virulence-related attributes of C. albicans pathogenesis. Moreover, these results provide direct evidence for a key role of SNARE proteins in vesicle-mediated polarized hyphal growth of C. albicans.
  • 机译 海洋酵母分离及工业应用
    摘要:Over the last century, terrestrial yeasts have been widely used in various industries, such as baking, brewing, wine, bioethanol and pharmaceutical protein production. However, only little attention has been given to marine yeasts. Recent research showed that marine yeasts have several unique and promising features over the terrestrial yeasts, for example higher osmosis tolerance, higher special chemical productivity and production of industrial enzymes. These indicate that marine yeasts have great potential to be applied in various industries. This review gathers the most recent techniques used for marine yeast isolation as well as the latest applications of marine yeast in bioethanol, pharmaceutical and enzyme production fields.
  • 机译 自主复制序列,可用于多种发芽酵母
    摘要:The initiation of DNA replication at replication origins is essential for the duplication of genomes. In yeast, the autonomously replicating sequence (ARS) property of replication origins is necessary for the stable maintenance of episomal plasmids. However, because the sequence determinants of ARS function differ among yeast species, current ARS modules are limited for use to a subset of yeasts. Here we describe a short ARS sequence that functions in at least 10 diverse species of budding yeast. These include, but are not limited to members of the Saccharomyces, Lachancea, Kluyveromyces, and Pichia (Komagataella) genera spanning over 500 million years of evolution. In addition to its wide species range, this ARS and an optimized derivative confer improved plasmid stability relative to other currently used ARS modules.
  • 机译 酵母Sirtuins与衰老调节
    摘要:The Sirtuins are a phylogenetically conserved family of NAD+ dependent protein deacetylases that consume one molecule of NAD+ for every deacetylated lysine side chain. Their requirement for NAD+ potentially makes them prone to regulation by fluctuations in NAD+ or biosynthesis intermediates, thus linking them to cellular metabolism. The Sir2 protein from Saccharomyces cerevisiae is the founding sirtuin family member and has been well characterized as a histone deacetylase that functions in transcriptional silencing of heterochromatin domains and as a pro longevity factor for replicative lifespan, defined as the number of times a mother cells divides (buds) before senescing. Deleting SIR2 shortens replicative lifespan, while increased gene dosage causes extension. Furthermore, Sir2 has been implicated in mediating the beneficial effects of caloric restriction on lifespan, not only in yeast, but also higher eukaryotes. While this paradigm has had its share of disagreements and debate, it has also helped rapidly drive the aging research field forward. S. cerevisiae has four additional sirtuins, Hst1, Hst2, Hst3, and Hst4. This review discusses the function of Sir2 and the Hst homologs in replicative aging and chronological aging, and also addresses how the sirtuins are regulated in response to environmental stresses such as caloric restriction.
  • 机译 其他酵母,裂殖酵母和白色念珠菌的衰老和细胞死亡
    摘要:How do cells age and die? For the past twenty years, the budding yeast, Saccharomyces cerevisiae, has been used as a model organism to uncover the genes that regulate lifespan and cell death. More recently, investigators have begun to interrogate the other yeasts, the fission yeast, Schizosaccharomyces pombe, and the human fungal pathogen, Candida albicans, to determine if similar longevity and cell death pathways exist in these organisms. After summarizing the longevity and cell death phenotypes in S. cerevisiae, this mini-review surveys the progress made in the study of both aging and programmed cell death (PCD) in the yeast models, with a focus on the biology of S. pombe and C. albicans. Particular emphasis is placed on the similarities and differences between the two types of aging, replicative aging and chronological aging, and between the three types of cell death, intrinsic apoptosis, autophagic cell death, and regulated necrosis, found in these yeasts. The development of the additional microbial models for aging and PCD in the other yeasts may help further elucidate the mechanisms of longevity and cell death regulation in eukaryotes.
  • 机译 酵母中的脂质和细胞死亡
    摘要:Understanding lipid-induced malfunction represents a major challenge of today's biomedical research. The connection of lipids to cellular and organ dysfunction, cell death, and disease (often referred to as lipotoxicity) is more complex than the sole lipotoxic effects of excess free fatty acids and requires genetically tractable model systems for mechanistic investigation. We herein summarize recent advances in the field of lipid-induced toxicity that employ the established model system for cell death and aging research of budding yeast Saccharomyces cerevisiae. Studies in yeast have shed light on various aspects of lipotoxicity, including free fatty acid toxicity, sphingolipid-modulated cell death as well as the involvement of cardiolipin and lipid peroxidation in the mitochondrial pathways of apoptosis. Regimens used range from exogenously applied lipids, genetic modulation of lipolysis and triacylglyceride synthesis, variations in sphingolipid/ceramide metabolism as well as changes in peroxisome function by either genetic or pharmacological means. In future, the yeast model of programmed cell death will further contribute to the clarification of crucial questions of lipid-associated malfunction.
  • 机译 酵母复制性衰老:定义保守的长寿干预措施的范例
    摘要:The finite replicative life span of budding yeast mother cells was demonstrated as early as 1959, but the idea that budding yeast could be used to model aging of multicellular eukaryotes did not enter the scientific mainstream until relatively recently. Despite continued skepticism by some, there are now abundant data that several interventions capable of extending yeast replicative life span have a similar effect in multicellular eukaryotes including nematode worms, fruit flies, and rodents. In particular, dietary restriction, mTOR signaling, and sirtuins are among the most studied longevity interventions in the field. Here, we describe key conserved longevity pathways in yeast and discuss relationships that may help explain how such broad conservation of aging processes could have evolved.
  • 机译 活性氧,衰老和兴奋剂
    摘要:For more than 50 years the Free Radical Theory served as the paradigm guiding most investigations of ageing. However, recent studies in a variety of organisms have identified conceptual and practical limitations to this theory. Some of these limitations are related to the recent discovery that caloric restriction and other experimental manipulations promote longevity by inducing hormesis effects in association with increased reactive oxygen species (ROS). The beneficial role of ROS in lifespan extension is consistent with the essential role of these molecules in cell signalling. However, the identity of specific forms of ROS that promote longevity remains unclear. In this article, we argue that in several model systems, hydrogen peroxide plays a crucial role in the induction of hormesis.
  • 机译 I-SceI大范围核酸酶在酿酒酵母中的一步组装和靶向整合
    摘要:In vivo assembly of overlapping fragments by homologous recombination in Saccharomyces cerevisiae is a powerful method to engineer large DNA constructs. Whereas most in vivo assembly methods reported to date result in circular vectors, stable integrated constructs are often preferred for metabolic engineering as they are required for large-scale industrial application. The present study explores the potential of combining in vivo assembly of large, multigene expression constructs with their targeted chromosomal integration in S. cerevisiae. Combined assembly and targeted integration of a ten-fragment 22-kb construct to a single chromosomal locus was successfully achieved in a single transformation process, but with low efficiency (5% of the analyzed transformants contained the correctly assembled construct). The meganuclease I-SceI was therefore used to introduce a double-strand break at the targeted chromosomal locus, thus to facilitate integration of the assembled construct. I-SceI-assisted integration dramatically increased the efficiency of assembly and integration of the same construct to 95%. This study paves the way for the fast, efficient, and stable integration of large DNA constructs in S. cerevisiae chromosomes.
  • 机译 驻留在酵母液泡中的M28金属蛋白酶家族成员的表征
    摘要:The systematic and complete characterization of the Saccharomyces cerevisiae genome and proteome has been stalled in some cases by misannotated genes. One such gene is YBR074W, which was initially annotated as two independent open reading frames (ORFs). We now report on Ybr074, a metalloprotease family member that was initially predicted to reside in the endoplasmic reticulum (ER). Therefore, we tested the hypothesis that Ybr074 may be an ER quality control protease. Instead, indirect immunofluorescence images indicate that Ybr074 is a vacuolar protein, and by employing protease protection assays, we demonstrate that a conserved M28 metalloprotease domain is oriented within the lumen. Involvement of Ybr074 in ER protein quality control was ruled out by examining the stabilities of several well-characterized substrates in strains lacking Ybr074. Finally, using a proteomic approach, we show that disrupting Ybr074 function affects the levels of select factors implicated in vacuolar trafficking and osmoregulation. Together, our data indicate that Ybr074 is the only multi-spanning vacuolar membrane protease found in the yeast Saccharomyces cerevisiae.
  • 机译 寿命终止的细胞周期停滞有助于酵母复制性衰老的随机性
    摘要:There is growing evidence that stochastic events play an important role in determining individual longevity. Studies in model organisms have demonstrated that genetically identical populations maintained under apparently equivalent environmental conditions display individual variation in lifespan that can be modeled by the Gompertz-Makeham law of mortality. Here we report that within genetically identical haploid and diploid wild type populations, shorter-lived cells tend to arrest in a budded state, while cells that arrest in an unbudded state are significantly longer-lived. This relationship is particularly notable in diploid BY4743 cells, where mother cells that arrest in a budded state have a shorter mean lifespan (25.6 vs. 35.6) and larger coefficient of variance with respect to individual lifespan (0.42 vs. 0.32) than cells that arrest in an unbudded state. Mutations that cause genomic instability tend to shorten lifespan and increase the proportion of the population that arrest in a budded state. These observations suggest that randomly occurring damage may contribute to stochasticity during replicative aging by causing a subset of the population to terminally arrest prematurely in the S or G2 phase of the cell cycle.
  • 机译 肥大在衰老中的作用越来越大
    摘要:Numerous observations support the existence of senescence factors in yeast. Historically, the asymmetric propagation and accumulation of extra-chromosomal ribosomal DNA circles (ERCs) has been proposed to fulfill this function. On the other hand, several recent papers have re-invigorated the discussion of a potential role for cell size and/or hypertrophy in yeast senescence. While studies have revealed evidence both in favor of and against the hypertrophy model, the prevalent dogma largely discounts a potential role for cell size in the control of cellular lifespan. However, new results not only demonstrate a correlation between cell size and senescence, but allude to a causative role of cell size and hypertrophy in aging. In particular, the degree of hypertrophy, as determined by the rate of cell growth per generation, appears to function as a major determinant of cellular lifespan. Herein, in light of these new data, we examine the recent debate regarding a potential role for cell size in yeast aging, address criticisms of this model, and suggest that the balance is tipping in favor of hypertrophy having a causative role in aging, albeit not as the sole “aging factor.”
  • 机译 表征酿酒酵母中质粒负荷和拷贝数以优化代谢工程应用
    摘要:Many metabolic engineering and genetic engineering applications in yeast rely on the use of plasmids. Despite their pervasive use and the diverse collections available, there is a fundamental lack of understanding of how commonly used DNA plasmids affect the cell’s ability to grow and how the choice of plasmid components can influence plasmid load and burden. In this study, we characterized the major attributes of the 2μ and centromeric plasmids typically used in yeast by examining the impact of choice of selection marker, promoter, origin of replication, and strain ploidy on conferred growth rates and plasmid copy number. We conclude that the “plasmid burden,” as demonstrated by a reduced growth rate, is primarily due to the choice of selection marker, especially when auxotrophic markers are utilized. The plasmid burden traditionally attributed to replication and maintenance of plasmid DNA plays only a minor role in haploid yeast yet is much more significant in diploid strains. The selection marker can also significantly change plasmid copy number. In fact, plasmid copy number can be influenced to some extent by all of the parameters tested. The information presented in this study will allow for more rational design and selection of plasmids for engineering applications.
  • 机译 十四种蛋白质编码基因的引物和真酵母的深系统发育
    摘要:The Saccharomycetales or ‘true yeasts’ consist of more than 800 described species, including many of scientific, medical and commercial importance. Considerable progress has been made in determining the phylogenetic relationships of these species, largely based on rDNA sequences, but many nodes for early-diverging lineages cannot be resolved with rDNA alone. rDNA is also not ideal for delineating recently diverged species. From published full-genome sequence data, we have identified 14 regions of protein-coding genes that can be PCR-amplified in a large proportion of a diverse collection of 25 yeast species using degenerate primers. Phylogenetic analysis of the sequences thus obtained reveals a well-resolved phylogeny of the Saccharomycetales with many branches having high bootstrap support. Analysis of published sequences from the Saccharomyces paradoxus species complex shows that these protein-coding gene fragments are also informative about genealogical relationships amongst closely related strains. Our set of protein-coding gene fragments is therefore suitable for analysing both ancient and recent evolutionary relationships amongst yeasts.
  • 机译 酿酒酵母逆行信号中的真菌RTG2基因的表征
    摘要:Changes in the functional status of mitochondria result in the transcriptional activation of a subset of nuclear-encoded genes in a process referred to as retrograde signaling. In Saccharomyces cerevisiae, this molecular link between mitochondria and the nuclear genome is controlled by three key signaling proteins: Rtg1p, Rtg2p, and Rtg3p. Although the retrograde signaling response has been well characterized in S. cerevisiae, very little is known about this pathway in other fungi. In this study, we selected four species having uncharacterized open reading frames (ORFs) with more than 66% amino acid identity to Rtg2p for further analysis. To determine whether these putative RTG2 ORFs encoded bona fide regulators of retrograde signaling, we tested their ability to complement the defects associated with the S. cerevisiae rtg2Δ mutant. Specifically, we tested for complementation of citrate synthase (CIT2) and aconitase (ACO1) at the transcript and protein levels, glutamate auxotrophy, and changes in the interaction between Rtg2p and the negative regulator Mks1p. Our findings show that all four Rtg2p homologs are functional upon activation of retrograde signaling, although their degree of complementation varied. In addition, all Rtg2p homologs showed a marked reduction in Mks1p binding, which may contribute to their altered responses to retrograde signaling.
  • 机译 白色念珠菌Pma1p在酿酒酵母中的异源表达
    摘要:Candida albicans is a major cause of opportunistic and life-threatening systemic fungal infections, especially in the immunocompromised. The plasma membrane proton pumping ATPase (Pma1p) is an essential enzyme that generates the electrochemical gradient required for cell growth. We expressed C. albicans Pma1p (CaPma1p) in Saccharomyces cerevisiae to facilitate screening for inhibitors. Replacement of S. cerevisiae PMA1 with C. albicans PMA1 gave clones expressing CaPma1p that grew slowly at low pH. CaPma1p was expressed at significantly lower levels and had lower specific activity than the native Pma1p. It also conferred pH sensitivity, hygromycin B resistance and low levels of glucose-dependent proton pumping. Recombination between CaPMA1 and the homologous non-essential ScPMA2 resulted in chimeric suppressor mutants that expressed functional CaPma1p with improved H+-ATPase activity and growth rates at low pH. Molecular models of suppressor mutants identified specific amino acids (between 531-595 in CaPma1p) that may affect regulation of the activity of Pma1p oligomers in S. cerevisiae. A modified CaPma1p chimeric construct containing only 5 amino acids from ScPma2p enabled the expression of a fully functional enzyme for drug screens and structural resolution.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号