您现在的位置:首页>美国卫生研究院文献>FEMS Microbiology Reviews

期刊信息

  • 期刊名称:

    -

  • 刊频: Six issues per year, v. 30, issue 2 (Mar. 2006)-
  • NLM标题: FEMS Microbiol Rev
  • iso缩写: -
  • ISSN: -

年度选择

更多>>

  • 排序:
  • 显示:
  • 每页:
全选(0
<1/10>
188条结果
  • 机译 抗生素耐药性突破者:当前方法和未来方向
    摘要:
  • 机译 河流中的岛屿:瘤胃生态系统中从个人到公共的纤维降解
    摘要:
  • 机译 制造和破坏警报器:细菌中(p)ppGpp合成酶/水解酶的调节
    摘要:
  • 机译 细菌基因调控机制的多样性多功能性和复杂性:在合成生物学中应用的机遇与不足
    摘要:Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
  • 机译 人类致癌性γ-疱疹病毒易致病的免疫缺陷
    摘要:Human γ-herpesviruses include the closely related tumor viruses Epstein Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV). EBV is the most growth-transforming pathogen known and is linked to at least seven human malignancies. KSHV is also associated with three human cancers. Most EBV- and KSHV-infected individuals fortunately remain disease-free despite persistent infection and this is likely due to the robustness of the immune control that they mount against these tumor viruses. However, upon immune suppression EBV- and KSHV-associated malignancies emerge at increased frequencies. Moreover, primary immunodeficiencies with individual mutations that predispose to EBV or KSHV disease allow us to gain insights into a catalog of molecules that are required for the immune control of these tumor viruses. Curiously, there is little overlap between the mutation targets that predispose individuals to EBV versus KSHV disease, even so both viruses can infect the same host cell, human B cells. These differences will be discussed in this review. A better understanding of the crucial components in the near-perfect life-long immune control of EBV and KSHV should allow us to target malignancies that are associated with these viruses, but also induce similar immune responses against other tumors.
  • 机译 生命和超越三个领域的细胞外膜囊泡
    摘要:Cells from all three domains of life, Archaea, Bacteria and Eukarya, produce extracellular vesicles (EVs) which are sometimes associated with filamentous structures known as nanopods or nanotubes. The mechanisms of EV biogenesis in the three domains remain poorly understood, although studies in Bacteria and Eukarya indicate that the regulation of lipid composition plays a major role in initiating membrane curvature. EVs are increasingly recognized as important mediators of intercellular communication via transfer of a wide variety of molecular cargoes. They have been implicated in many aspects of cell physiology such as stress response, intercellular competition, lateral gene transfer (via RNA or DNA), pathogenicity and detoxification. Their role in various human pathologies and aging has aroused much interest in recent years. EVs can be used as decoys against viral attack but virus-infected cells also produce EVs that boost viral infection. Here, we review current knowledge on EVs in the three domains of life and their interactions with the viral world.
  • 机译 肺炎克雷伯氏菌感染生物学:为抵抗宿主防御而活
    摘要:Klebsiella species cause a wide range of diseases including pneumonia, urinary tract infections (UTIs), bloodstream infections and sepsis. These infections are particularly a problem among neonates, elderly and immunocompromised individuals. Klebsiella is also responsible for a significant number of community-acquired infections. A defining feature of these infections is their morbidity and mortality, and the Klebsiella strains associated with them are considered hypervirulent. The increasing isolation of multidrug-resistant strains has significantly narrowed, or in some settings completely removed, the therapeutic options for the treatment of Klebsiella infections. Not surprisingly, this pathogen has then been singled out as an ‘urgent threat to human health’ by several organisations. This review summarises the tremendous progress that has been made to uncover the sophisticated immune evasion strategies of K. pneumoniae. The co-evolution of Klebsiella in response to the challenge of an activated immune has made Klebsiella a formidable pathogen exploiting stealth strategies and actively suppressing innate immune defences to overcome host responses to survive in the tissues. A better understanding of Klebsiella immune evasion strategies in the context of the host–pathogen interactions is pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.
  • 机译 质粒可塑性和移动遗传元件在昆虫病原菌苏云金芽孢杆菌血清型以色列中的作用
    摘要:Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, ‘israelensis’ is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.
  • 机译 从毛团到假设-微生物网络的生物学见解
    摘要:Microbial networks are an increasingly popular tool to investigate microbial community structure, as they integrate multiple types of information and may represent systems-level behaviour. Interpreting these networks is not straightforward, and the biological implications of network properties are unclear. Analysis of microbial networks allows researchers to predict hub species and species interactions. Additionally, such analyses can help identify alternative community states and niches. Here, we review factors that can result in spurious predictions and address emergent properties that may be meaningful in the context of the microbiome. We also give an overview of studies that analyse microbial networks to identify new hypotheses. Moreover, we show in a simulation how network properties are affected by tool choice and environmental factors. For example, hub species are not consistent across tools, and environmental heterogeneity induces modularity. We highlight the need for robust microbial network inference and suggest strategies to infer networks more reliably.
  • 机译 古细菌细胞表面生物发生
    摘要:Cell surfaces are critical for diverse functions across all domains of life, from cell-cell communication and nutrient uptake to cell stability and surface attachment. While certain aspects of the mechanisms supporting the biosynthesis of the archaeal cell surface are unique, likely due to important differences in cell surface compositions between domains, others are shared with bacteria or eukaryotes or both. Based on recent studies completed on a phylogenetically diverse array of archaea, from a wide variety of habitats, here we discuss advances in the characterization of mechanisms underpinning archaeal cell surface biogenesis. These include those facilitating co- and post-translational protein targeting to the cell surface, transport into and across the archaeal lipid membrane, and protein anchoring strategies. We also discuss, in some detail, the assembly of specific cell surface structures, such as the archaeal S-layer and the type IV pili. We will highlight the importance of post-translational protein modifications, such as lipid attachment and glycosylation, in the biosynthesis as well as the regulation of the functions of these cell surface structures and present the differences and similarities in the biogenesis of type IV pili across prokaryotic domains.
  • 机译 群体感应和化学交流在真菌生物技术和发病机理中的作用
    摘要:Microbial cells do not live in isolation in their environment, but rather they communicate with each other using chemical signals. This sophisticated mode of cell-to-cell signalling, known as quorum sensing, was first discovered in bacteria, and coordinates the behaviour of microbial population behaviour in a cell-density-dependent manner. More recently, these mechanisms have been described in eukaryotes, particularly in fungi, where they regulate processes such as pathogenesis, morphological differentiation, secondary metabolite production and biofilm formation. In this manuscript, we review the information available to date on these processes in yeast, dimorphic fungi and filamentous fungi. We analyse the diverse chemical ‘languages’ used by different groups of fungi, their possible cross-talk and interkingdom interactions with other organisms. We discuss the existence of these mechanisms in multicellular organisms, the ecophysiological role of QS in fungal colonisation and the potential applications of these mechanisms in biotechnology and pathogenesis.
  • 机译 原核Argonaute蛋白使DNA沉默为抵御入侵核酸增加了新的防御层
    摘要:Argonaute (Ago) proteins are encoded in all three domains of life and are responsible for the regulation of intracellular nucleic acid levels. Whereas some Ago variants are able to cleave target nucleic acids by their endonucleolytic activity, others only bind to their target nucleic acids while target cleavage is mediated by other effector proteins. Although all Ago proteins show a high degree of overall structural homology, the nature of the nucleic acid binding partners differs significantly. Recent structural and functional data have provided intriguing new insights into the mechanisms of archaeal and bacterial Ago variants demonstrating the mechanistic diversity within the prokaryotic Ago family with astonishing differences in nucleic acid selection and nuclease specificity. In this review, we provide an overview of the structural organisation of archaeal Ago variants and discuss the current understanding of their biological functions that differ significantly from their eukaryotic counterparts.
  • 机译 关于光合作用起源和进化的生理观点
    摘要:The origin and early evolution of photosynthesis are reviewed from an ecophysiological perspective. Earth's first ecosystems were chemotrophic, fueled by geological H2 at hydrothermal vents and, required flavin-based electron bifurcation to reduce ferredoxin for CO2 fixation. Chlorophyll-based phototrophy (chlorophototrophy) allowed autotrophs to generate reduced ferredoxin without electron bifurcation, providing them access to reductants other than H2. Because high-intensity, short-wavelength electromagnetic radiation at Earth's surface would have been damaging for the first chlorophyll (Chl)-containing cells, photosynthesis probably arose at hydrothermal vents under low-intensity, long-wavelength geothermal light. The first photochemically active pigments were possibly Zn-tetrapyrroles. We suggest that (i) after the evolution of red-absorbing Chl-like pigments, the first light-driven electron transport chains reduced ferredoxin via a type-1 reaction center (RC) progenitor with electrons from H2S; (ii) photothioautotrophy, first with one RC and then with two, was the bridge between H2-dependent chemolithoautotrophy and water-splitting photosynthesis; (iii) photothiotrophy sustained primary production in the photic zone of Archean oceans; (iv) photosynthesis arose in an anoxygenic cyanobacterial progenitor; (v) Chl a is the ancestral Chl; and (vi), anoxygenic chlorophototrophic lineages characterized so far acquired, by horizontal gene transfer, RCs and Chl biosynthesis with or without autotrophy, from the architects of chlorophototrophy—the cyanobacterial lineage.
  • 机译 真菌毒性中的金属
    摘要:Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the ‘nutritional immunity’, in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species—focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species—not the least to exploit this knowledge for new antifungal strategies.
  • 机译 疟原虫蛋白的重复序列
    摘要:Five species of parasite cause malaria in humans with the most severe disease caused by Plasmodium falciparum. Many of the proteins encoded in the P. falciparum genome are unusually enriched in repetitive low-complexity sequences containing a limited repertoire of amino acids. These repetitive sequences expand and contract dynamically and are among the most rapidly changing sequences in the genome. The simplest repetitive sequences consist of single amino acid repeats such as poly-asparagine tracts that are found in approximately 25% of P. falciparum proteins. More complex repeats of two or more amino acids are also common in diverse parasite protein families. There is no universal explanation for the occurrence of repetitive sequences and it is possible that many confer no function to the encoded protein and no selective advantage or disadvantage to the parasite. However, there are increasing numbers of examples where repetitive sequences are important for parasite protein function. We discuss the diverse roles of low-complexity repetitive sequences throughout the parasite life cycle, from mediating protein–protein interactions to enabling the parasite to evade the host immune system.
  • 机译 毒素在艰难梭菌感染中的作用
    摘要:Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease.
  • 机译 超越体积:揭示单个微生物细胞的寿命
    摘要:Microbial single cell analysis has led to discoveries that are beyond what can be resolved with population-based studies. It provides a pristine view of the mechanisms that organize cellular physiology, unbiased by population heterogeneity or uncontrollable environmental impacts. A holistic description of cellular functions at the single cell level requires analytical concepts beyond the miniaturization of existing technologies, defined but uncontrolled by the biological system itself. This review provides an overview of the latest advances in single cell technologies and demonstrates their potential. Opportunities and limitations of single cell microbiology are discussed using selected application-related examples.
  • 机译 支持土壤微生物生命多样性的生物物理过程
    摘要:Soil, the living terrestrial skin of the Earth, plays a central role in supporting life and is home to an unimaginable diversity of microorganisms. This review explores key drivers for microbial life in soils under different climates and land-use practices at scales ranging from soil pores to landscapes. We delineate special features of soil as a microbial habitat (focusing on bacteria) and the consequences for microbial communities. This review covers recent modeling advances that link soil physical processes with microbial life (termed biophysical processes). Readers are introduced to concepts governing water organization in soil pores and associated transport properties and microbial dispersion ranges often determined by the spatial organization of a highly dynamic soil aqueous phase. The narrow hydrological windows of wetting and aqueous phase connectedness are crucial for resource distribution and longer range transport of microorganisms. Feedbacks between microbial activity and their immediate environment are responsible for emergence and stabilization of soil structure—the scaffolding for soil ecological functioning. We synthesize insights from historical and contemporary studies to provide an outlook for the challenges and opportunities for developing a quantitative ecological framework to delineate and predict the microbial component of soil functioning.
  • 机译 大胆思考:细菌细胞大小的可调性
    摘要:The determination of cell size is a fundamental challenge for all living organisms. In a given growth condition, cell size for a particular bacterial species typically falls within a narrow distribution. Nonetheless, size can vary enormously across species, and the size of a single bacterium can even vary substantially across growth conditions. Recent phenomenological studies have revived classic interest in how cells maintain their size and how they adjust their size with changes in growth rate. However, the mechanisms by which cells establish a particular size are relatively enigmatic. Here, we review existing knowledge on how size in rod-shaped bacteria is shaped by nutrient, mechanical, and genetic factors. We also examine obstacles to accurate size measurement and recent technologies that help to overcome these hurdles. Finally, we discuss the relevance of cell size to bacterial physiology.
  • 机译 工程化人类宿主防御抗菌肽的临床应用前景
    摘要:Infectious diseases caused by bacteria, viruses or fungi are among the leading causes of death worldwide. The emergence of drug-resistance mechanisms, especially among bacteria, threatens the efficacy of all current antimicrobial agents, some of them already ineffective. As a result, there is an urgent need for new antimicrobial drugs. Host defense antimicrobial peptides (HDPs) are natural occurring and well-conserved peptides of innate immunity, broadly active against Gram-negative and Gram-positive bacteria, viruses and fungi. They also are able to exert immunomodulatory and adjuvant functions by acting as chemotactic for immune cells, and inducing cytokines and chemokines secretion. Moreover, they show low propensity to elicit microbial adaptation, probably because of their non-specific mechanism of action, and are able to neutralize exotoxins and endotoxins. HDPs have the potential to be a great source of novel antimicrobial agents. The goal of this review is to provide an overview of the advances made in the development of human defensins as well as the cathelicidin LL-37 and their derivatives as antimicrobial agents against bacteria, viruses and fungi for clinical use.

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号