class='head no_bottom_margin' id='sec1title'>Int'/> Mapping the Interaction Sites between AMPA Receptors and TARPs Reveals a Role for the Receptor N-Terminal Domain in Channel Gating
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Mapping the Interaction Sites between AMPA Receptors and TARPs Reveals a Role for the Receptor N-Terminal Domain in Channel Gating
【2h】

Mapping the Interaction Sites between AMPA Receptors and TARPs Reveals a Role for the Receptor N-Terminal Domain in Channel Gating

机译:映射AMPA受体和TARP之间的相互作用位点揭示了通道门控中受体N末端域的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionAMPA-type glutamate receptors (AMPARs) mediate fast excitatory transmission and are crucial for various forms of synaptic plasticity (). Their varied kinetic behavior (), as well as their calcium permeability and voltage-dependent block by polyamines (), varies between brain regions and appear to be adapted to the specific function of a given circuit (). These properties depend on the nature and mRNA processing status of the four pore-forming subunits (GluA1–GluA4) () and on the type and stoichiometry of AMPAR auxiliary subunits ().Four families of auxiliary subunits have been identified: transmembrane AMPAR regulatory proteins (TARPs) (), cornichons (), CKAMP44 (), and GSG1L (). Most of these alter AMPAR gating and confer effects that can be specific for a given synapse or cell. TARPs were the first identified bona fide AMPAR auxiliary proteins, modifying both AMPAR function and trafficking. Based on their modulatory actions, TARPs have been classified as type 1a (γ-2 and γ-3), type 1b (γ-4 and γ-8), and type 2 (γ-5 and γ-7) (). TARP-like modulation of AMPARs has also been seen in invertebrates () and thus appears highly conserved.The precise nature of the AMPAR/TARP interaction and thus the mechanism underlying gating modulation are poorly understood. Both the AMPAR transmembrane region and the ligand binding domain (LBD) have been implicated in TARP interactions responsible for the modulation of ligand efficacy, pharmacology, gating, and pore properties (). Experiments using domain swapping between subtypes have identified TARP regions that are involved in regulating AMPARs. These include the extracellular loop (Ex1), the transmembrane sector, and the C terminus. Specifically, the TARP C tail appears critical for receptor trafficking and mediation of kinetic effects, while Ex1 influences both the efficacy of the partial agonist kainate and AMPAR kinetics ().The most distal AMPAR domain, the N-terminal domain (NTD), is expected to be beyond the “reach” of the associated TARP. Apart from a role in subunit assembly, no clear function has been ascribed to this large and most sequence-diverse domain (href="#bib17" rid="bib17 bib28" class=" bibr popnode">Hansen et al., 2010; Kumar and Mayer, 2013), although deletion of the NTD slows desensitization kinetics (href="#bib3" rid="bib3 bib36 bib41" class=" bibr popnode">Bedoukian et al., 2006; Möykkynen et al., 2014; Pasternack et al., 2002). In stark contrast, the NTD of the N-methyl-D-aspartate (NMDA)-type glutamate receptor (NMDAR) mediates allosteric regulation of channel open probability (href="#bib40" rid="bib40" class=" bibr popnode">Paoletti, 2011) in a subunit-specific manner, rendering the NTD an important target for selective NMDAR drugs (href="#bib32" rid="bib32" class=" bibr popnode">Mony et al., 2009). NTD-mediated allostery in NMDARs has been shown to involve the ∼16-residue peptide linkers that connect the NTD to the LBD (href="#bib13" rid="bib13 bib33 bib68" class=" bibr popnode">Gielen et al., 2009; Mony et al., 2011; Yuan et al., 2009).Here we show that the AMPAR NTD plays a previously unrecognized role in signaling. Shortening of the NTD-LBD linkers altered desensitization rates and recovery from the desensitized state and increased the steady-state response. These gating effects were TARP dependent and TARP specific. Using peptide arrays, we mapped the GluA2/TARP contact region and identified TARP binding sites on the NTD. On the LBD, TARP contact points mapped to functionally critical sites, including the ligand binding cleft, the flip/flop region, and the linkers that connect the LBD to the ion channel. We also determined the sites on the TARP that are contacted by the AMPAR and assessed their functional role using corresponding TARP mutants. Our results provide detailed insights into the molecular interactions of TARPs with AMPARs and show that these include the distal NTD. This subunit-specific TARP regulatory site may permit fine tuning of AMPAR signaling and provide a target for subunit-selective drugs.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介 AMPA型谷氨酸受体(AMPAR)可介导快速兴奋性传递,对于各种形式至关重要突触可塑性()。它们的变化的动力学行为(),以及钙的渗透性和多胺对电压的依赖性(),在大脑区域之间有所不同,并且似乎适应了给定电路的特定功能()。这些特性取决于四个成孔亚基(GluA1-GluA4)的性质和mRNA加工状态()以及AMPAR辅助亚基的类型和化学计量()。已鉴定出四个辅助亚基家族:跨膜AMPAR调节蛋白(TARP)(),角质子(),CKAMP44()和GSG1L()。这些大多数改变了AMPAR门控,并赋予了特定的突触或细胞特效。 TARPs是最早鉴定出的真正的AMPAR辅助蛋白,可同时修饰AMPAR功能和运输。根据其调节作用,TARPs分为1a型(γ-2和γ-3),1b型(γ-4和γ-8)和2型(γ-5和γ-7)()。在无脊椎动物中也观察到了AMPAR的TARP样调节(),因此看起来非常保守。AMPAR / TARP相互作用的精确本质以及门控调节的机制尚不清楚。 AMPAR跨膜区和配体结合域(LBD)都与负责调节配体功效,药理学,门控和孔性质的TARP相互作用有关()。使用亚型之间的域交换进行的实验已经确定了参与调节AMPAR的TARP区域。这些包括细胞外环(Ex1),跨膜区和C末端。具体来说,TARP C尾部似乎对受体运输和动力学效应的调解至关重要,而Ex1影响部分激动剂红藻氨酸盐和AMPAR动力学的功效()。最远端的AMPAR域N端域(NTD)是预期超出相关TARP的“范围”。除了在亚基组装中的作用外,没有明确的功能归因于这个庞大且序列最丰富的域(href="#bib17" rid="bib17 bib28" class=" bibr popnode"> Hansen等人, 2010; Kumar和Mayer,2013 ),尽管删除NTD会减慢脱敏动力学(href="#bib3" rid="bib3 bib36 bib36 bib41" class=" bibr popnode"> Bedoukian等,2006)。 ;Möykkynen等人,2014; Pasternack等人,2002 )。与之形成鲜明对比的是,N-甲基-D-天冬氨酸(NMDA)型谷氨酸受体(NMDAR)的NTD介导了通道开放概率的变构调节(href =“#bib40” rid =“ bib40” class =“ bibr popnode“> Paoletti,2011 )以亚单位特定的方式出现,使NTD成为选择性NMDAR药物的重要目标(href="#bib32" rid="bib32" class=" bibr popnode"> Mony等,2009 )。 NTD介导的NMDAR中的变构作用已显示涉及将NTD连接至LBD的约16个残基的肽接头(href="#bib13" rid="bib13 bib33 bib68" class=" bibr popnode"> Gielen等等人,2009年; Mony等人,2011年; Yuan等人,2009 )。在这里,我们证明AMPAR NTD在信号传导中起着以前未被认识的作用。 NTD-LBD接头的缩短改变了脱敏率和脱敏状态的恢复,并增加了稳态响应。这些选通效应是TARP依赖性和TARP特异性的。使用肽阵列,我们绘制了GluA2 / TARP接触区域,并确定了NTD上的TARP结合位点。在LBD上,TARP接触点映射到功能关键的位点,包括配体结合裂,翻转/翻转区以及将LBD连接到离子通道的接头。我们还确定了AMPAR与TARP接触的位点,并使用相应的TARP突变体评估了它们的功能。我们的结果为TARPs与AMPAR的分子相互作用提供了详细的见识,并表明其中包括远端NTD。该亚基特异性的TARP调节位点可以允许AMPAR信号的微调,并为亚基选择性药物提供靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号