class='head no_bottom_margin' id='sec1title'>Int'/> Structure of the Vacuolar H+-ATPase Rotary Motor Reveals New Mechanistic Insights
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Structure of the Vacuolar H+-ATPase Rotary Motor Reveals New Mechanistic Insights
【2h】

Structure of the Vacuolar H+-ATPase Rotary Motor Reveals New Mechanistic Insights

机译:液泡H + -ATPase旋转马达的结构揭示了新的力学见解。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe rotary ATPase family includes the F1Fo-ATPase (ATP synthase) of mitochondria, chloroplasts and eubacteria, the vacuolar ATPase (V-ATPase), and the A-ATPases present in archaea and some bacteria (). A common feature of this family is an ATP hydrolyzing/synthesizing motor asymmetrically coupled to a membrane-bound ion pump. In V-ATPases, ATP hydrolysis in the cytoplasmic V1 domain drives rotation of a central rotor axle, which transmits torque to the proton pump in the membrane domain (Vo). Conversely, in F- and A-ATPases operating in synthase mode, torque generated by ion flow through the membrane domain is transmitted to the soluble domain, driving ATP synthesis. Proton translocation is proposed to occur at the interface between rotating and static components in Vo/Fo/Ao, the static part (the stator) forming a continuous structure with the ATP hydrolyzing apparatus. Comparisons of ATP free energy with electrochemical membrane potential or directly measured work output indicate thermodynamic efficiency close to 100% ().V-ATPases are found in all eukaryotic cells () driving acidification essential to the function of endosomes, lysosomes, and the Golgi apparatus (). Inhibition blocks endosomal transit and arrests recycling of receptor-ligand complexes. Disease mutations cause dysfunctional glycosylation and aberrant protein sorting by the Golgi (). The V-ATPase also energizes secondary active transport processes such as neurotransmitter uptake into secretory vesicles (). V-ATPases are active at the plasma membrane of some cells, for example, in tumor cells () and in osteoclasts where acid extrusion is essential for resorption of mineralized bone ().In the V-ATPase V1 domain, alternating A and B subunits form a pseudohexameric arrangement, with three catalytic sites located at the B-A interfaces (). ATP hydrolysis moves a helix-loop-helix “lever arm” in subunit A with sequential hydrolysis imposing torque on the central axle comprising the helical coiled-coil D subunit linked at its base to subunit F. The end of the axle is connected to a ring of c subunits in the membrane via subunit d, allowing concerted c ring rotation. The rotor carries ∼35 pN nm of torque (), which is not rigid and can flex along its length (). Proton translocation is thought to occur at the interface between the rotating c ring and the static large integral membrane a subunit. Models propose that the proton boards the c ring via a half channel in a, with subsequent stepping of the rotor, allowing proton exit on the opposite side of the membrane via a second channel (). Detailed structural information for the membrane domain of subunit a is lacking, although the soluble domain of a bacterial subunit a homolog has been solved (). Biochemical studies indicate an N-terminal soluble cytoplasmic domain linked to eight transmembrane helices, with residues in helices 7 and 8 involved in proton movement (). Another small integral membrane subunit, e, is poorly characterized, but is reported to be heavily glycosylated and associated with subunit a ().Futile rotation of a with the c ring is prevented by the stator attached to the (AB)3 motor. In V-ATPase, the stator has three subunit E/G filaments attached to the top of the B subunits and converging with a horizontal collar structure that surrounds most of the midsection of the rotor axle (reviewed in href="#bib37" rid="bib37" class=" bibr popnode">Muench et al., 2011). This collar comprises the a subunit soluble domain and subunits C and H. In contrast, the A-ATPase (which lacks C and H) has only two EG filaments (href="#bib27" rid="bib27" class=" bibr popnode">Lau and Rubinstein, 2010), and in F-ATPase the stator is a single filament (href="#bib48" rid="bib48" class=" bibr popnode">Rubinstein et al., 2003). The additional complexity in V-ATPase appears to be an adaptation for more sophisticated control. Low-energy status, such as occurs during larval molt in Manduca sexta or as a result of glucose depletion in Saccharomyces cerevisiae, causes dissociation of V1 from Vo in vitro (href="#bib56" rid="bib56 bib23" class=" bibr popnode">Sumner et al., 1995; Kane, 1995). Although in vivo experiments suggest a more subtle rearrangement rather than complete separation (href="#bib57" rid="bib57" class=" bibr popnode">Tabke et al., 2014), the functional effects are well defined: catalytic silencing in V1 (href="#bib44" rid="bib44" class=" bibr popnode">Parra et al., 2000) and proton impermeability in Vo (href="#bib4" rid="bib4" class=" bibr popnode">Beltran and Nelson, 1992). Subunit C may be the receptor for the dissociation signal, and subunit H has been proposed to then prevent ATP cycling by fixing the rotor axle to the stator (href="#bib44" rid="bib44 bib38" class=" bibr popnode">Parra et al., 2000; Muench et al., 2013).Recent technical advances, including more stable microscopes, high-sensitivity direct electron detectors, and new image processing algorithms, have substantially improved the resolution attainable by electron cryomicroscopy (cryo-EM) (href="#bib52" rid="bib52" class=" bibr popnode">Smith and Rubinstein, 2014). Now, cryo-EM of even relatively small and nonsymmetrical membrane protein complexes can resolve structures to below 5 Å (href="#bib29" rid="bib29" class=" bibr popnode">Lu et al., 2014) and conformational changes linked to mechanisms (href="#bib9" rid="bib9" class=" bibr popnode">Cao et al., 2013). In this study, we report the complete structure of a eukaryotic V-ATPase at nanometer resolution, using cryo-EM. Our model provides insights into the organization of its proton-translocating apparatus and the basis for the extraordinarily high efficiency of rotary ATPases. The complex rests in a different catalytic state from previously reported yeast structures, providing new insights into the rotary mechanism.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介旋转式ATPase家族包括线粒体,叶绿体和线粒体的F1Fo-ATPase(ATP合酶)真细菌,液泡ATPase(V-ATPase)和古细菌和某些细菌中存在的A-ATPase()。该家族的共同特征是与膜结合离子泵不对称耦合的ATP水解/合成马达。在V-ATPase中,胞质V1域中的ATP水解驱动中心转子轴的旋转,该转子轴将扭矩传递到膜结构域(Vo)中的质子泵。相反,在以合酶模式运行的F-和A-ATP酶中,离子流过膜结构域产生的扭矩被传递到可溶性结构域,从而驱动ATP合成。提出质子易位发生在Vo / Fo / Ao的旋转和静态成分之间的界面上,其中静态部分(定子)与ATP水解装置形成连续结构。将ATP自由能与电化学膜电势或直接测量的功输出进行比较表明,热力学效率接近100%()。在所有真核细胞中发现V-ATPase()驱动酸化对于内体,溶酶体和高尔基体的功能至关重要()。抑制作用会阻止内体转运,并阻止受体-配体复合物的再循环。疾病突变导致功能异常的糖基化和高尔基体(Golgi)对蛋白质进行异常分选。 V-ATPase还可以激发次要的主动转运过程,例如神经递质吸收进入分泌性小泡()。 V-ATPase在某些细胞的质膜上有活性,例如在肿瘤细胞()和破骨细胞中,其中酸挤出对于矿化骨骼的吸收至关重要()。在V-ATPase V1域中,A和B交替亚基形成一个假六聚体排列,三个催化位点位于BA界面()。 ATP水解作用使A单元中的螺旋-环-螺旋“杠杆臂”运动,并顺序水解,在中央轴上施加扭矩,该中央轴包括在其基部上连接到F子单元的螺旋螺旋线圈D子单元。轴的末端连接到通过亚基d在膜中形成c个亚基的环,使c环协调旋转。转子承受约35 pN nm的扭矩(),该扭矩不是刚性的,并且可以沿其长度()弯曲。质子易位被认为发生在旋转的c环与静态大整体膜a亚基之间的界面处。模型提出,质子通过a中的一个半通道进入c环,随后使转子步进,从而允许质子通过第二个通道()在膜的相对侧离开。尽管已经解决了细菌亚基a同源物的可溶性结构域,但缺少亚基a膜结构域的详细结构信息()。生化研究表明,与8个跨膜螺旋连接的N末端可溶性胞质域,螺旋7和8中的残基参与质子运动()。另一个小的整体膜亚基e的特性较差,但据报道其糖基化程度很高,并与亚基a()相关。通过与(AB)3电动机相连的定子,α与c环的无用旋转。在V-ATPase中,定子具有三个亚基E / G细丝,它们附着在B亚基的顶部,并汇聚成水平的轴环结构,该结构环绕着转子轴的大部分中部(已在href =“#bib37”中进行了评论) rid =“ bib37” class =“ bibr popnode”> Muench等人,2011 )。该衣领包含一个亚基可溶域和C和H亚基。相反,A-ATPase(缺少C和H)只有两条EG丝(href =“#bib27” rid =“ bib27” class =“ bibr popnode“> Lau和Rubinstein,2010 ),而在F-ATPase中,定子是单根细丝(href="#bib48" rid="bib48" class=" bibr popnode"> Rubinstein等。 。,2003 )。 V-ATPase的额外复杂性似乎是对更复杂控制的一种适应。低能状态,例如在曼杜卡(Manduca sexta)幼虫蜕皮期间发生或由于酿酒酵母(Saccharomyces cerevisiae)中的葡萄糖消耗减少,导致V1在体外与Vo分离(href =“#bib56” rid =“ bib56 bib23” class = “ bibr popnode“> Sumner等,1995; Kane,1995 )。尽管在体内实验中提示重排而不是完全分离(href="#bib57" rid="bib57" class=" bibr popnode"> Tabke et al。,2014 ),但功能作用是定义明确:V1中的催化沉默(href="#bib44" rid="bib44" class=" bibr popnode"> Parra et al。,2000 )和Vo中的质子不可渗透性(href =“ #bib4“ rid =” bib4“ class =” bibr popnode“> Beltran和Nelson,1992 )。 C亚基可能是解离信号的受体,并且提出了亚基H,然后通过将转子轴固定到定子来防止ATP循环(href="#bib44" rid="bib44 bib38" class=" bibr popnode"> Parra等,2000; Muench等人,2013 )。最近的技术进步,包括更稳定的显微镜,高灵敏度直接电子检测器以及新的图像处理算法,极大地提高了电子冷冻显微镜(cryo-EM)可获得的分辨率(href =“#bib52” rid =“ bib52” class =“ bibr popnode”>史密斯和鲁宾斯坦,2014年)。现在,即使是相对较小且不对称的膜蛋白复合物,cryo-EM也可以将结构解析到5Å以下(href="#bib29" rid="bib29" class=" bibr popnode"> Lu等,2014 )和与机制相关的构象变化(href="#bib9" rid="bib9" class=" bibr popnode"> Cao等人,2013 )。在这项研究中,我们报告了使用冷冻EM的纳米分辨率的真核V-ATPase的完整结构。我们的模型提供了对其质子转运装置的组织的见解,以及旋转ATPase效率极高的基础。该复合物处于与先前报道的酵母结构不同的催化状态,为旋转机理提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号