首页> 美国卫生研究院文献>Elsevier Sponsored Documents >PSI–LHCI of Chlamydomonas reinhardtii: Increasing the absorption cross section without losing efficiency
【2h】

PSI–LHCI of Chlamydomonas reinhardtii: Increasing the absorption cross section without losing efficiency

机译:莱茵衣藻的PSI-LHCI:在不损失效率的情况下增加吸收截面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Photosystem I (PSI) is an essential component of photosynthetic membranes. Despite the high sequence and structural homologies, its absorption properties differ substantially in algae, plants and cyanobacteria. In particular it is characterized by the presence of low-energy chlorophylls (red forms), the number and the energy of which vary in different organisms. The PSI–LHCI (PSI–light harvesting complex I) complex of the green alga Chlamydomonas reinhardtii (C.r.) is significantly larger than that of plants, containing five additional light-harvesting complexes (together binding ≈ 65 chlorophylls), and contains red forms with higher energy than plants. To understand how these differences influence excitation energy transfer and trapping in the system, we studied two PSI–LHCI C.r. particles, differing in antenna size and red-form content, using time-resolved fluorescence and compared them to plant PSI–LHCI. The excited state kinetics in C.r. shows the same average lifetime (50 ps) as in plants suggesting that the effect of antenna enlargement is compensated by higher energy red forms. The system equilibrates very fast, indicating that all Lhcas are well-connected, despite their long distance to the core. The differences between C.r. PSI–LHCI with and without Lhca2 and Lhca9 show that these Lhcas bind red forms, although not the red-most. The red-most forms are in (or functionally close to) other Lhcas and slow down the trapping, but hardly affect the quantum efficiency, which remains as high as 97% even in a complex that contains 235 chlorophylls.
机译:光系统I(PSI)是光合膜的重要组成部分。尽管序列和结构同源性很高,但其吸收特性在藻类,植物和蓝细菌中却大不相同。特别是它的特征是存在低能量的叶绿素(红色形式),其数量和能量在不同的生物体中都不同。绿藻衣藻(Crlamydomonas reinhardtii(Cr))的PSI-LHCI(PSI-光收集复合物I)复合物比植物大得多,包含5种其他的光收集复合物(结合在一起≈65个叶绿素),并带有红色形式比植物更高的能量。为了了解这些差异如何影响系统中的激发能传递和俘获,我们研究了两个PSI–LHCIC.r。使用时间分辨荧光将天线尺寸和红色形式含量不同的颗粒分离,并将其与植物PSI–LHCI进行比较。 C.r.的激发态动力学显示出与植物相同的平均寿命(50 ps),这表明天线扩大的影响被更高能量的红色形式所补偿。该系统非常快速地达到平衡,这表明所有Lhcas都连接良好,尽管它们与核心之间的距离很远。 C.r.之间的区别具有和不具有Lhca2和Lhca9的PSI–LHCI显示这些Lhcas结合红色形式,尽管不是最红色。最红色的形式在其他Lhcas中(或在功能上接近),使捕获速度变慢,但几乎不影响量子效率,即使在包含235个叶绿素的复合物中,量子效率也高达97%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号