class='head no_bottom_margin' id='sec1title'>Int'/> Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue
【2h】

Intravital FRAP Imaging using an E-cadherin-GFP Mouse Reveals Disease- and Drug-Dependent Dynamic Regulation of Cell-Cell Junctions in Live Tissue

机译:使用E-钙粘着蛋白-GFP小鼠的活体FRAP成像揭示了活组织中细胞-细胞连接的疾病和药物依赖性动态调节

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe capacity of cancer cells to dissociate from primary tumors and invade requires the deregulation of interactions with adjacent cells and the surrounding tissue. A major challenge in biology is the real-time monitoring of protein dynamics involved in this process in their native context (). The ability to quantify the intricate spatiotemporal regulation of cell adhesion molecules, such as E-cadherin, using techniques including fluorescence recovery after photobleaching (FRAP) has rapidly enhanced our understanding of E-cadherin’s subcellular roles in regulating cell-cell integrity and dissociation in vitro (, , , ).FRAP is commonly used for monitoring molecular movement within cells. A small fluorescent region is bleached, and fluorescence recovery into the bleached region is measured over time (, , ). From this, multiple readouts can be derived, including, but not limited to the half-time of recovery, a measure of the rate at which fluorescent molecules move in or out of the region of interest, and the immobile fraction, an indication of how much of the molecule remains trapped and unable to move out of the analyzed region (for in-depth insights into FRAP analysis, see ). In the case of fluorescently labeled E-cadherin, the immobile fraction can indicate how much E-cadherin is trapped or engaged in cell-cell junctions and may provide a molecular readout of junction stability in real time (, ).FRAP has largely been used to probe molecular events within 2D cell culture using transfection-based approaches (, ), whereas its utility in vivo has been limited (). Recently, we and others have used FRAP in more complex and physiologically relevant environments ranging from application in Drosophila () to the use of E-cadherin-GFP FRAP in a mammalian system in vivo (href="#bib54" rid="bib54" class=" bibr popnode">Serrels et al., 2009), where E-cadherin-GFP-expressing squamous cell carcinoma cells were transplanted and grown subcutaneously in mice. Using this approach, we demonstrated that locally invading cells had a significantly lower immobile fraction of E-cadherin-GFP compared with non-invading cells, illustrating that, in cancer cells that retain E-cadherin expression, mobilization rather than loss of E-cadherin can play a role in reducing cell-cell adhesions, leading to more malleable, motile, and invasive tumor behavior (href="#bib20" rid="bib20" class=" bibr popnode">Friedl et al., 2012, href="#bib32" rid="bib32" class=" bibr popnode">Lamouille et al., 2014, href="#bib55" rid="bib55" class=" bibr popnode">Shamir et al., 2014). Although these approaches provide insights into the mobilization of E-cadherin in subcutaneous xenograft tumors, they lack the fidelity to recapitulate the complex and distinct microenvironment found in specific organs of interest (href="#bib13" rid="bib13" class=" bibr popnode">Conway et al., 2014). It is therefore essential to develop new tools for the quantification of molecular dynamics in distinct organs in which the disease of interest originates, allowing us to understand cell behavior at a subcellular and tissue- and disease-specific level.In this study, we generated a Cre-inducible E-cadherin-GFP mouse and exploited this model using intravital FRAP imaging to assess changes in E-cadherin-based cell-cell junction integrity during disease progression and in response to drug treatment. Here we mimic the disease etiology of pancreatic cancer in situ, from acquisition of an initiating Kras mutation that occurs in 95% of pancreatic cancers (href="#bib5" rid="bib5" class=" bibr popnode">Biankin et al., 2012, href="#bib26" rid="bib26" class=" bibr popnode">Hingorani et al., 2003) to subsequent loss- or gain-of-function mutations in the tumor suppressor p53, which occur in 50%–75% of pancreatic cancers (href="#bib5" rid="bib5" class=" bibr popnode">Biankin et al., 2012). Using FRAP analysis, we reveal that E-cadherin stability in normal pancreas or in non-invasive pancreatic tumors (KrasG12D alone or KrasG12D; p53−/−) remains unaltered during disease progression. However, in mice with KrasG12D and gain-of-function mutations in p53 (p53R172H), E-cadherin is mobilized, facilitating the weakening of cell-cell contacts, correlating with the enhanced metastasis seen in this model (href="#bib27" rid="bib27" class=" bibr popnode">Hingorani et al., 2005, href="#bib40" rid="bib40" class=" bibr popnode">Morton et al., 2010b). Moreover, in line with recent work assessing Src kinase as an anti-invasive drug target (href="#bib2" rid="bib2" class=" bibr popnode">Avizienyte et al., 2002, href="#bib39" rid="bib39" class=" bibr popnode">Morton et al., 2010a, href="#bib45" rid="bib45" class=" bibr popnode">Nobis et al., 2013, href="#bib46" rid="bib46" class=" bibr popnode">Nobis et al., 2014), we demonstrate that the phase II drug dasatinib reverts E-cadherin mobilization in invasive pancreatic tumors and that this stabilization of junctions could partially explain its current anti-invasive role in this disease (T.J. Evans et al., 2012, ASCO, abstract). We therefore present the application of FRAP in the E-cadherin-GFP mouse for live, tissue-specific assessment of vital cell-cell adhesion changes in conjunction with its utility as a pre-clinical imaging tool for evaluating the efficacy of new therapeutics in the pancreas and other organs of interest in real time.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介癌细胞从原发肿瘤中解离和侵袭的能力要求解除与相邻细胞和周围组织。生物学的一个主要挑战是在其天然环境中实时监测参与此过程的蛋白质动力学。使用包括光漂白后荧光恢复(FRAP)在内的技术来量化细胞粘附分子(例如E-钙粘蛋白)的复杂时空调节的能力迅速增强了我们对E-钙粘蛋白亚细胞在体外调节细胞完整性和解离中的作用的了解。 (,,,).FRAP通常用于监视细胞内的分子运动。漂白了一个小的荧光区域,并随时间(,)测量荧光恢复到该漂白区域中的程度。据此,可以得出多个读数,包括但不限于恢复的一半时间,荧光分子移入或移出目标区域的速率的量度以及固定分数,这是如何指示的。许多分子仍然被困住,无法移出分析区域(有关FRAP分析的深入了解,请参见)。在荧光标记的E-钙粘蛋白的情况下,固定部分可以表明有多少E-钙粘蛋白被捕获或参与细胞-细胞连接,并且可以实时提供连接稳定性的分子读数(,).FRAP已被广泛使用使用基于转染的方法来探测2D细胞培养物中的分子事件(,),而其在vivo中的效用受到限制()。最近,我们和其他人在更复杂且与生理相关的环境中使用了FRAP,从果蝇中的应用到在体内的哺乳动物系统中E-钙粘着蛋白-GFP FRAP的使用(href =“#bib54” rid =“ bib54“ class =” bibr popnode“> Serrels等,2009 ),其中表达E-cadherin-GFP的鳞状细胞癌细胞被移植并在小鼠中皮下生长。使用这种方法,我们证明了与非侵袭性细胞相比,局部侵袭细胞的E-钙粘着蛋白-GFP固定比例明显降低,这说明在保留E-钙黏着蛋白表达的癌细胞中,动员而不是失去E-钙粘着蛋白可以在减少细胞间粘附方面发挥作用,导致更具延展性,活动性和侵袭性的肿瘤行为(href="#bib20" rid="bib20" class=" bibr popnode"> Friedl等,2012 < / a>,href="#bib32" rid="bib32" class=" bibr popnode">拉莫耶等人,2014 ,href =“#bib55” rid =“ bib55” class = “ bibr popnode”> Shamir等人,2014 )。尽管这些方法为皮下异种移植肿瘤中E-钙粘蛋白的动员提供了见识,但它们缺乏对在特定感兴趣器官中发现的复杂而独特的微环境进行概括的保真度(href =“#bib13” rid =“ bib13” class = “ bibr popnode“> Conway等人,2014 )。因此,开发新工具量化感兴趣疾病起源的不同器官中的分子动力学至关重要,这使我们能够了解亚细胞以及组织和疾病特异性水平的细胞行为。 Cre可诱导的E-cadherin-GFP小鼠,并利用活体FRAP成像开发了该模型,以评估疾病进展过程中以及对药物治疗的反应,基于E-cadherin的细胞连接完整性的变化。在这里,我们通过获取在95%的胰腺癌中发生的初始Kras突变来模拟胰腺癌的病因(href="#bib5" rid="bib5" class=" bibr popnode"> Biankin等等人,2012 ,href="#bib26" rid="bib26" class=" bibr popnode"> Hingorani等人,2003 )导致随后的功能丧失或获得功能抑癌基因p53发生突变,发生在50%–75%的胰腺癌中(href="#bib5" rid="bib5" class=" bibr popnode"> Biankin等人,2012 ) 。使用FRAP分析,我们揭示了正常胰腺或非侵袭性胰腺肿瘤(单独的Kras G12D 或Kras G12D ; p53 -/- )在疾病进展过程中保持不变。但是,在具有Kras G12D 和p53功能获得性突变(p53 R172H )的小鼠中,E-钙粘着蛋白被动员,从而促进了细胞间接触的减弱,与该模型中观察到的转移增强相关(href="#bib27" rid="bib27" class=" bibr popnode"> Hingorani et al。,2005 ,href =“#bib40” rid =“ bib40” class =“ bibr popnode”> Morton等,2010b )。此外,与最近将Src激酶评估为抗侵害性药物靶点的工作一致(href="#bib2" rid="bib2" class=" bibr popnode"> Avizienyte等,2002 ,href =“#bib39” rid =“ bib39” class =“ bibr popnode”> Morton等人,2010a ,href="#bib45" rid="bib45" class=" bibr popnode"> Nobis等人,2013 ,href="#bib46" rid="bib46" class=" bibr popnode"> Nobis等人,2014 ),我们证明了II期药物达沙替尼还原了侵袭性胰腺肿瘤中的E-钙粘蛋白动员,并且这种连接的稳定化可以部分解释其当前在该疾病中的抗侵袭作用(TJ Evans等人,2012,ASCO,摘要)。因此,我们介绍FRAP在E-cadherin-GFP小鼠中的应用,以活组织特异性评估重要的细胞间粘附力,并结合其作为临床前成像工具的效用,以评估新疗法在治疗中的功效。胰腺和其他感兴趣的器官是实时的。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号