首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Bistability in the Rac1 PAK and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches
【2h】

Bistability in the Rac1 PAK and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches

机译:Rac1PAK和RhoA信号网络中的双稳态驱动肌动蛋白细胞骨架动力学和细胞运动性开关

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe members of the Rho family of small guanosine triphosphatase (GTPases), RhoA and Rac1, play crucial roles in a range of cellular functions, including the regulation of the actin cytoskeleton, cell polarity and migration, gene expression, and cell proliferation (, ). Rho GTPases function as molecular switches, cycling between inactive guanosine diphosphate (GDP)-bound (“off”) and active GTP-bound (“on”) states. In their “on” state, Rho GTPases can bind downstream effector proteins, initiating signaling through multiple pathways. The GTPase activation-deactivation cycle is tightly controlled by two opposing enzyme groups, (1) guanine exchange factors (GEFs), which facilitate switching from GDP to guanosine triphosphate (GTP), and (2) GTPase-activating proteins (GAPs), which stimulate GTP to GDP hydrolysis.Active Rho family GTPases, Rac1 and RhoA, induce the membrane translocation of downstream effectors and trigger their activation, which commonly involves post-translational modifications and conformational changes of bound proteins (, ). Membrane-bound Rac1-GTP recruits p21-activated kinases (PAKs) by binding to their Cdc42-Rac interactive binding (CRIB) domain. In resting cells, type I PAKs are localized in the cytoplasm as inactive dimers, with the regulatory domain shielding the kinase domain. Rac1 binding induces a conformational change and subsequent activation of PAKs, which then can phosphorylate downstream substrates. The PAKs’ activity converts the local activation of Rho-type GTPases into cell-wide responses (, ).Rac1 and RhoA, along with their fellow Rho GTPase family member Cdc42, work in a coordinated fashion to control cell migration (for reviews, see , , ). Rac1 is responsible for driving actin polymerization at the leading edge of a migrating cell, resulting in the formation of lamellipodia, which pushes the cell membrane forward (, , , ). Rac1 also promotes focal complex assembly (, ) and is essential for migration (href="#bib31" rid="bib31" class=" bibr popnode">Nobes and Hall, 1999). RhoA is required for cell adhesion (href="#bib31" rid="bib31" class=" bibr popnode">Nobes and Hall, 1999). It stimulates contractility in cells through myosin light-chain (MLC) phosphorylation, which induces the formation of stress fibers and focal adhesions (href="#bib9" rid="bib9" class=" bibr popnode">Chrzanowska-Wodnicka and Burridge, 1996, href="#bib39" rid="bib39" class=" bibr popnode">Ridley and Hall, 1992). From the perspective of cell morphology, Rac1 and RhoA oppose each other. Although the picture is likely more complicated (see href="#sec3" rid="sec3" class=" sec">Discussion), canonical descriptions of cell migration place active Rac1 at the migrating cell’s front and active RhoA at its back. Biochemically, Rac1 and RhoA are generally found to interact in mutually antagonistic ways, playing opposing roles in cell migration (href="#bib33" rid="bib33" class=" bibr popnode">Ohta et al., 2006, href="#bib44" rid="bib44" class=" bibr popnode">Sanz-Moreno et al., 2008; reviewed in href="#bib17" rid="bib17" class=" bibr popnode">Guilluy et al., 2011).Double-negative feedback loops resulting from mutual inhibition can lead to bistability (href="#bib21" rid="bib21" class=" bibr popnode">Kholodenko, 2006). A bistable system can flip between two biochemically distinct steady states; in the proper context, these steady states can promote different cellular phenotypes. Thus, the existence of bistability enables switch-like behaviors in which a graded, analog change in signal inputs could cause abrupt, digital responses in signaling outputs (href="#bib14" rid="bib14" class=" bibr popnode">Ferrell, 2002, href="#bib51" rid="bib51" class=" bibr popnode">Tyson et al., 2003). Bistability has been observed in many biological systems, including the mitogen-activated protein kinase (MAPK) family cascades (href="#bib2" rid="bib2" class=" bibr popnode">Bhalla et al., 2002, href="#bib25" rid="bib25" class=" bibr popnode">Markevich et al., 2004, href="#bib26" rid="bib26" class=" bibr popnode">Markevich et al., 2006, href="#bib60" rid="bib60" class=" bibr popnode">Xiong and Ferrell, 2003) and Cdc2 activation circuit (href="#bib38" rid="bib38" class=" bibr popnode">Pomerening et al., 2003, href="#bib47" rid="bib47" class=" bibr popnode">Sha et al., 2003), which play important roles in diverse cellular functions such as development and memory (href="#bib32" rid="bib32" class=" bibr popnode">Ogasawara and Kawato, 2010). Although it was suggested that mutual inhibition between Rac1 and RhoA may result in bistable activity responses (href="#bib20" rid="bib20" class=" bibr popnode">Jilkine et al., 2007, href="#bib48" rid="bib48" class=" bibr popnode">Symons and Segall, 2009, href="#bib50" rid="bib50" class=" bibr popnode">Tsyganov et al., 2012), this behavior and the consequences for cell migration have not yet been experimentally observed. Here, we combine kinetic modeling and experimentation to demonstrate the existence of bistability in the Rac1-RhoA signaling system of highly motile MDA-MB-231 cells. Model analysis and simulations predict that graded changes in PAK activity induce bistable responses of Rac1 and RhoA activities, which are experimentally validated. Furthermore, the bistable properties of the Rac1-RhoA biochemical circuitry are translated into bistability of the actin dynamics and cell migration.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介小鸟苷三磷酸酶(GTPases)Rho家族的成员,RhoA和Rac1,在一系列细胞功能中起关键作用,包括肌动蛋白细胞骨架的调节,细胞极性和迁移,基因表达和细胞增殖()。 Rho GTPases充当分子开关,在非活性鸟嘌呤二磷酸(GDP)结合(“关闭”)状态和活性GTP结合(“开启”)状态之间循环。在其“开启”状态下,Rho GTPases可以结合下游效应蛋白,通过多种途径启动信号传导。 GTPase的激活-失活周期受到两个相对的酶基团的严格控制,(1)鸟嘌呤交换因子(GEFs)有助于从GDP转换为三磷酸鸟苷(GTP),以及(2)GTPase激活蛋白(GAPs),刺激GTP转化为GDP水解。活跃的Rho家族GTPases,Rac1和RhoA诱导下游效应子的膜移位并触发其激活,这通常涉及结合蛋白的翻译后修饰和构象变化。膜结合的Rac1-GTP通过与Cdc42-Rac相互作用结合(CRIB)域结合来募集p21激活的激酶(PAK)。在静息细胞中,I型PAKs以非活性二聚体形式存在于细胞质中,其调节结构域屏蔽了激酶结构域。 Rac1结合诱导构象变化和随后的PAK激活,然后可以磷酸化下游底物。 PAKs的活动将Rho型GTPases的本地激活转化为整个细胞的应答(,).Rac1和RhoA以及他们的Rho GTPase家族成员Cdc42协同工作以控制细胞迁移(有关综述,请参见,,)。 Rac1负责在迁移细胞的前缘驱动肌动蛋白聚合,从而导致板状脂膜的形成,从而推动细胞膜向前(“”,“”)移动。 Rac1还促进了焦点复杂的装配(,),并且对于迁移至关重要(href="#bib31" rid="bib31" class=" bibr popnode"> Nobes and Hall,1999 )。 RhoA是细胞粘附所必需的(href="#bib31" rid="bib31" class=" bibr popnode"> Nobes and Hall,1999 )。它通过肌球蛋白轻链(MLC)磷酸化刺激细胞的收缩力,从而诱导应力纤维和粘着斑的形成(href="#bib9" rid="bib9" class=" bibr popnode"> Chrzanowska-Wodnicka和Burridge,1996 ,href="#bib39" rid="bib39" class=" bibr popnode"> Ridley and Hall,1992 )。从细胞形态的角度来看,Rac1和RhoA彼此相对。尽管图片可能更复杂(请参见href="#sec3" rid="sec3" class=" sec">讨论),但是对单元格迁移的规范描述将活动的Rac1置于迁移单元的前端,并且活动RhoA在后面。从生化角度看,通常发现Rac1和RhoA以相互拮抗的方式相互作用,在细胞迁移中起相反的作用(href="#bib33" rid="bib33" class=" bibr popnode"> Ohta等,2006 ,href="#bib44" rid="bib44" class=" bibr popnode"> Sanz-Moreno等人,2008 ;已在href =“#bib17” rid =“ bib17中进行了评论“ class =” bibr popnode“> Guilluy等人,2011 )。由于相互抑制而产生的双负反馈循环可能会导致双稳态(href =”#bib21“ rid =” bib21“ class =” bibr popnode“>霍洛坚科,2006 )。双稳态系统可以在两个生物化学上不同的稳态之间进行转换。在适当的情况下,这些稳态可以促进不同的细胞表型。因此,双稳态的存在使交换机具有类似的行为,其中信号输入中的渐变模拟变化可能导致信号输出中的突然数字响应(href =“#bib14” rid =“ bib14” class =“ bibr popnode” > Ferrell,2002 ,href="#bib51" rid="bib51" class=" bibr popnode">泰森等人,2003 )。在许多生物系统中都观察到了双稳性,包括有丝分裂原激活的蛋白激酶(MAPK)家族级联反应(href="#bib2" rid="bib2" class=" bibr popnode"> Bhalla等,2002 ,href="#bib25" rid="bib25" class=" bibr popnode"> Markevich等,2004 ,href =“#bib26” rid =“ bib26” class =“ bibr popnode“> Markevich et al。,2006 ,href="#bib60" rid="bib60" class=" bibr popnode"> Xiong和Ferrell,2003 )和Cdc2激活电路( href="#bib38" rid="bib38" class=" bibr popnode"> Pomerening等人,2003 ,href =“#bib47” rid =“ bib47” class =“ bibr popnode” > Sha等人,2003 ),它们在多种细胞功能(例如发育和记忆)中起着重要作用(href="#bib32" rid="bib32" class=" bibr popnode"> Ogasawara和Kawato,2010 )。尽管有人建议Rac1和RhoA之间的相互抑制可能导致双稳态活性反应(href="#bib20" rid="bib20" class=" bibr popnode"> Jilkine et al。,2007 ,< a href =“#bib48” rid =“ bib48” class =“ bibr popnode”>西蒙斯和塞加尔,2009 ,href="#bib50" rid="bib50" class=" bibr popnode"> Tsyganov等人,2012 ),尚未通过实验观察到这种行为和细胞迁移的后果。在这里,我们结合动力学建模和实验来证明高运动MDA-MB-231细胞的Rac1-RhoA信号系统中存在双稳态。模型分析和模拟预测,PAK活性的分级变化会引起Rac1和RhoA活性的双稳态响应,这已通过实验验证。此外,Rac1-RhoA生化电路的双稳态特性转化为肌动蛋白动力学和细胞迁移的双稳态。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号