class='head no_bottom_margin' id='sec1title'>Int'/> Sialic Acid-Binding Immunoglobulin-like Lectin G Promotes Atherosclerosis and Liver Inflammation by Suppressing the Protective Functions of B-1 Cells
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Sialic Acid-Binding Immunoglobulin-like Lectin G Promotes Atherosclerosis and Liver Inflammation by Suppressing the Protective Functions of B-1 Cells
【2h】

Sialic Acid-Binding Immunoglobulin-like Lectin G Promotes Atherosclerosis and Liver Inflammation by Suppressing the Protective Functions of B-1 Cells

机译:唾液酸结合免疫球蛋白样凝集素G抑制B-1细胞的保护功能促进动脉粥样硬化和肝脏炎症。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionAtherosclerosis is a lipid-driven chronic disease of the artery wall and the underlying cause of heart attacks and strokes, which accounts for the majority of mortalities and morbidities in the world (). It is characterized by chronic inflammatory responses to endogenous sterile triggers, such as oxidized LDL (OxLDL), dying cells, and their metabolic byproducts that trigger tissue inflammation if not efficiently cleared (, ). Persistence of this inflammatory response or its impaired resolution paves the way for chronic inflammatory responses, which have been shown to propagate associated pathologies such as vascular and hepatic inflammation (). Thus, there is growing interest in identifying mechanisms that enhance the immune system’s capacity to prevent endogenously triggered inflammation and/or promote its resolution.B cells, which can be subdivided into B-1 and B2 cells, are emerging players in the chronic inflammation of metabolic diseases, such as obesity, diabetes, and atherosclerosis (, , , ). B2 cells, which include follicular (FO) B cells and marginal zone (MZ) B cells, have been shown to promote atherosclerotic lesion formation in murine models of atherosclerosis via mechanisms that are largely unclear (, ). On the other hand, selective transfer of B-1 cells, which can be further divided into B-1a and B-1b cells, protects mice from atherosclerosis (, ). One of the main functions of B-1 cells is the production of natural IgM antibodies (NAb), which are pre-existing germline encoded antibodies that arise without any conventional T cell help and comprise approximately 80% of IgM antibodies in unchallenged mice (). B-1a cells seem to exhibit their atheroprotective effects via the secretion of NAb (). Indeed, atherosclerosis-prone soluble IgM-deficient mice develop accelerated atherosclerosis, though the exact mechanism by which NAb protect is not entirely clear (). We and others have suggested that NAb promote the neutralization and clearance of self-antigens, such as dying cells and oxidized lipids (href="#bib48" rid="bib48" class=" bibr popnode">Tsiantoulas et al., 2012). These studies indicate the importance of selective regulation of individual B cell subsets for appropriate responses to inflammatory triggers. Moreover, the role of B-1 cells in atherosclerosis has only been studied in immune-compromised animals, and their role in animals that do not lack major compartments of the immune system remains elusive. In this regard, the sialic acid-binding immunoglobulin-like lectin G (Siglec-G) is of particular interest as it acts as negative regulator of the B-1a cell population size, presumably via inhibiting B cell receptor dependent signaling (href="#bib22" rid="bib22" class=" bibr popnode">Hoffmann et al., 2007, href="#bib19" rid="bib19" class=" bibr popnode">Ding et al., 2007). We and others have previously shown that mice deficient in Siglec-G exhibit a nearly 10-fold expansion of B-1a cells along with a robust increase in total serum IgM (href="#bib22" rid="bib22" class=" bibr popnode">Hoffmann et al., 2007, href="#bib19" rid="bib19" class=" bibr popnode">Ding et al., 2007). Moreover, we also found that Siglec-G deficiency results in an expansion of IgM with specificity for oxidation-specific epitopes (OSE), which represent prototypic metabolic byproducts present on OxLDL, dying cells, and circulating microparticles (href="#bib18" rid="bib18" class=" bibr popnode">Chou et al., 2009, href="#bib50" rid="bib50" class=" bibr popnode">Tsiantoulas et al., 2015, href="#bib13" rid="bib13" class=" bibr popnode">Chang et al., 1999, href="#bib14" rid="bib14" class=" bibr popnode">Chang et al., 2004, href="#bib28" rid="bib28" class=" bibr popnode">Jellusova et al., 2010). As excessive accumulation of OSE has been suggested to be a key driver for inflammatory reactions in metabolic diseases, such as atherosclerosis, non-alcoholic steatohepatitis, and diabetes (href="#bib35" rid="bib35" class=" bibr popnode">Miller et al., 2011, href="#bib52" rid="bib52" class=" bibr popnode">Walenbergh et al., 2013, href="#bib23" rid="bib23" class=" bibr popnode">Horie et al., 1997), targeting Siglec-G may have beneficial therapeutic effects in chronic inflammation.The expansion of B-1a cells has also been associated with increased autoimmunity (href="#bib12" rid="bib12" class=" bibr popnode">Chan et al., 1997, href="#bib39" rid="bib39" class=" bibr popnode">Pao et al., 2007, href="#bib27" rid="bib27" class=" bibr popnode">Ishida et al., 2006), which could accelerate atherosclerosis (href="#bib42" rid="bib42" class=" bibr popnode">Roman and Salmon, 2007, href="#bib34" rid="bib34" class=" bibr popnode">Ma et al., 2008). Siglec-G deficiency has been shown to result in an earlier onset of autoimmune disease in the Murphy Roths Large/lymphoproliferative (MRL/lpr) lupus mouse model and leads to mild autoimmunity in aging mice with an over-activation of adaptive T and B cells (href="#bib36" rid="bib36" class=" bibr popnode">Müller et al., 2015, href="#bib10" rid="bib10" class=" bibr popnode">Bökers et al., 2014). In addition, Siglec-G has also been found to be expressed in and influence responses of myeloid cells. For example, Siglec-G has been shown to be upregulated by RNA viruses and to inhibit retinoic acid-inducible gene 1 (RIG-I) mediated IFN-β secretion by macrophages and dendritic cells. In line with this, vesicular stomatitis virus (VSV)-infected Siglec-G-deficient mice were found to display increased IFN-β production and decreased viral load compared to control mice (href="#bib17" rid="bib17" class=" bibr popnode">Chen et al., 2013). Moreover, dendritic cells of Siglec-G-deficient mice have been found to exhibit increased pro-inflammatory cytokine secretion in response to multiple danger-associated molecular patterns (DAMPs) (e.g., HSP70, HSP90, and HMGB1). A detrimental role of Siglec-G deficiency is further supported by the findings that Siglec-G-deficient mice exhibit increased mortality in models of acetaminophen-induced liver necrosis (href="#bib15" rid="bib15" class=" bibr popnode">Chen et al., 2009) and cecal ligation and puncture-induced sepsis (href="#bib16" rid="bib16" class=" bibr popnode">Chen et al., 2011). Thus, all studies so far indicate that Siglec-G functions as negative regulator of inflammation, and Siglec-G deficiency may actually propagate inflammatory responses. Because pro-inflammatory cytokine production is a hallmark of metabolic inflammation, the role of Siglec-G and the consequences of Siglec-G deficiency in chronic inflammation and specifically in atherosclerosis are entirely unknown.Here, we investigated the role of Siglec-G in sterile chronic inflammation in vivo. We demonstrate that total as well as B cell-specific Siglec-G deficiency reduces atherosclerotic lesion formation as well as hepatic inflammation in hypercholesterolemic Ldlr−/− mice. Moreover, we show that Siglec-G-deficient mice are protected form OxLDL-induced inflammation in vivo.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介动脉粥样硬化是脂质驱动的动脉壁慢性疾病,是心脏的潜在病因攻击和中风,占世界上大多数死亡和发病率的()。它的特征是对内源性无菌触发因素(如氧化的LDL(OxLDL),垂死的细胞及其代谢副产物,如果未有效清除会引起炎症)的慢性炎症反应。这种炎症反应的持续存在或其消弱的分辨率为慢性炎症反应铺平了道路,慢性炎症反应已被证明可以传播相关的病理学,例如血管和肝炎()。因此,人们越来越关注识别增强免疫系统预防内源性炎症和/或促进其消退的能力的机制。可细分为B-1和B2细胞的B细胞正在成为慢性炎症的参与者。代谢性疾病,例如肥胖,糖尿病和动脉粥样硬化(“”,“”)。 B2细胞,包括卵泡(FO)B细胞和边缘区(MZ)B细胞,已显示出在很大程度上尚不清楚的机制中促进动脉粥样硬化小鼠模型中动脉粥样硬化病变的形成(,)。另一方面,可以进一步分为B-1a和B-1b细胞的B-1细胞选择性转移可以保护小鼠免受动脉粥样硬化的侵害。 B-1细胞的主要功能之一是天然IgM抗体(NAb)的产生,它是预先存在的种系编码抗体,无需任何常规T细胞帮助即可产生,并且在未受攻击的小鼠中约占80%的IgM抗体() 。 B-1a细胞似乎通过分泌NAb()表现出其抗动脉粥样硬化作用。的确,尽管NAb保护的确切机制尚不完全清楚,但易患动脉粥样硬化的可溶性IgM缺陷小鼠会发展为动脉粥样硬化。我们和其他人提出,NAb可以促进中和和清除自身抗原,例如垂死的细胞和氧化的脂质(href="#bib48" rid="bib48" class=" bibr popnode"> Tsiantoulas等, 2012 )。这些研究表明选择性调节单个B细胞亚群对于炎症触发的适当反应的重要性。此外,仅在免疫受损的动物中研究了B-1细胞在动脉粥样硬化中的作用,而它们在不缺乏免疫系统主要部分的动物中的作用仍然难以捉摸。在这方面,与唾液酸结合的免疫球蛋白样凝集素G(Siglec-G)特别受关注,因为它可以作为B-1a细胞群体大小的负调节剂,大概是通过抑制B细胞受体依赖性信号传导来实现的(href =“#bib22” rid =“ bib22” class =“ bibr popnode”>霍夫曼等人,2007 ,href="#bib19" rid="bib19" class=" bibr popnode">丁等等,2007 )。我们和其他人以前已经证明,缺乏Siglec-G的小鼠的B-1a细胞扩增将近10倍,同时血清IgM总量也显着增加(href =“#bib22” rid =“ bib22” class = “ bibr popnode”> Hoffmann等,2007 ,href="#bib19" rid="bib19" class=" bibr popnode">丁等,2007 )。此外,我们还发现,Siglec-G缺乏症会导致IgM的扩增,其特异性针对氧化特异性表位(OSE),这代表存在于OxLDL,垂死细胞和循环微粒上的原型代谢副产物(href =“#bib18 “ rid =” bib18“ class =” bibr popnode“>周等人,2009 ,href="#bib50" rid="bib50" class=" bibr popnode"> Tsiantoulas等人,2015 ,href="#bib13" rid="bib13" class=" bibr popnode"> Chang等人,1999 ,href =“#bib14” rid =“ bib14”类=“ bibr popnode”> Chang等,2004 ,href="#bib28" rid="bib28" class=" bibr popnode"> Jellusova等,2010 )。由于OSE的过度积聚已被认为是代谢疾病(例如动脉粥样硬化,非酒精性脂肪性肝炎和糖尿病)中炎症反应的关键驱动力(href =“#bib35” rid =“ bib35” class =“ bibr popnode “> Miller等人,2011 ,href="#bib52" rid="bib52" class=" bibr popnode"> Walenbergh等人,2013 ,href =”#靶向Siglec-G的靶向Bib23“ rid =” bib23“ class =” bibr popnode“> Horie等,1997 )在慢性炎症中可能具有有益的治疗作用。B-1a细胞的扩增也与之相关具有增强的自身免疫性(href="#bib12" rid="bib12" class=" bibr popnode"> Chan et al。,1997 ,href =“#bib39” rid =“ bib39” class = “ bibr popnode”> Pao等人,2007 ,href="#bib27" rid="bib27" class=" bibr popnode">石田等人,2006 ),这可能会加速动脉粥样硬化(href="#bib42" rid="bib42" class=" bibr popnode">罗马和鲑鱼,2007 ,href =“#bib34” rid =“ bib34”类=“ bibr popnode”> Ma et al。,2008 )。已经显示,Siglec-G缺乏症可导致Murphy Roths大/淋巴增生性(MRL / lpr)狼疮小鼠模型中较早发作的自身免疫性疾病,并在衰老小鼠中导致轻度的自身免疫,并过度激活适应性T和B细胞(href="#bib36" rid="bib36" class=" bibr popnode">穆勒等人,2015 ,href =“#bib10” rid =“ bib10” class =“ bibr popnode “>Bökers等人,2014 )。另外,还发现Siglec-G在髓样细胞中表达并影响髓样细胞的反应。例如,已经显示Siglec-G被RNA病毒上调并抑制巨噬细胞和树突状细胞介导的视黄酸诱导基因1(RIG-I)介导的IFN-β分泌。与此相符,与对照组小鼠相比,发现水泡性口炎病毒(VSV)感染的Siglec-G缺陷小鼠表现出增加的IFN-β产生和病毒载量降低(href =“#bib17” rid =“ bib17” class =“ bibr popnode”> Chen等人,2013 )。此外,已经发现Siglec-G缺陷型小鼠的树突状细胞表现出对多种危险相关分子模式(DAMPs)(例如,HSP70,HSP90和HMGB1)的促炎性细胞因子分泌增加。 Siglec-G缺乏症的有害作用进一步得到以下发现的支持,即Siglec-G缺乏症小鼠在对乙酰氨基酚诱发的肝坏死模型中表现出更高的死亡率(href =“#bib15” rid =“ bib15” class =“ bibr popnode“> Chen等,2009 )和盲肠结扎和穿刺引起的败血症(href="#bib16" rid="bib16" class=" bibr popnode"> Chen等,2011 < / a>)。因此,迄今为止的所有研究表明,Siglec-G充当炎症的负调节剂,而Siglec-G缺乏症实际上可以传播炎症反应。由于促炎细胞因子的产生是代谢炎症的标志,因此尚不清楚Siglec-G的作用以及Siglec-G缺乏症在慢性炎症特别是在动脉粥样硬化中的作用。在此,我们研究了Siglec-G在无菌中的作用。体内慢性炎症我们证明了总胆固醇和B细胞特异性Siglec-G缺乏症可减少高胆固醇血症Ldlr -/-小鼠的动脉粥样硬化病变形成以及肝脏炎症。此外,我们显示Siglec-G缺陷小鼠受到OxLDL诱导的体内炎症的保护。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号