首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Computational modelling of movement-related beta-oscillatory dynamics in human motor cortex
【2h】

Computational modelling of movement-related beta-oscillatory dynamics in human motor cortex

机译:人运动皮层中与运动有关的β振荡动力学的计算模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Oscillatory activity in the beta range, in human primary motor cortex (M1), shows interesting dynamics that are tied to behaviour and change systematically in disease. To investigate the pathophysiology underlying these changes, we must first understand how changes in beta activity are caused in healthy subjects. We therefore adapted a canonical (repeatable) microcircuit model used in dynamic causal modelling (DCM) previously used to model induced responses in visual cortex. We adapted this model to accommodate cytoarchitectural differences between visual and motor cortex. Using biologically plausible connections, we used Bayesian model selection to identify the best model of measured MEG data from 11 young healthy participants, performing a simple handgrip task. We found that the canonical M1 model had substantially more model evidence than the generic canonical microcircuit model when explaining measured MEG data. The canonical M1 model reproduced measured dynamics in humans at rest, in a manner consistent with equivalent studies performed in mice. Furthermore, the changes in excitability (self-inhibition) necessary to explain beta suppression during handgrip were consistent with the attenuation of sensory precision implied by predictive coding. These results establish the face validity of a model that can be used to explore the laminar interactions that underlie beta-oscillatory dynamics in humans in vivo. Our canonical M1 model may be useful for characterising the synaptic mechanisms that mediate pathophysiological beta dynamics associated with movement disorders, such as stroke or Parkinson's disease.
机译:在人类初级运动皮层(M1)中,β范围内的振荡活动显示出与行为相关并在疾病中系统地变化的有趣动态。要调查这些变化的潜在病理生理学,我们必须首先了解健康受试者中β活性的变化是如何引起的。因此,我们调整了动态因果模型(DCM)中使用的规范(可重复)微电路模型,该模型先前用于对视觉皮层中的诱发响应进行建模。我们适应了该模型,以适应视觉和运动皮层之间的细胞架构差异。使用生物学上合理的联系,我们使用贝叶斯模型选择来确定11位年轻健康参与者测得的MEG数据的最佳模型,并执行简单的抓握任务。我们发现,在解释测得的MEG数据时,规范的M1模型比通用的规范微电路模型具有更多的模型证据。规范的M1模型以与在小鼠中进行的等效研究一致的方式,再现了人体静息状态下的动态测量值。此外,解释手握期间的β抑制所必需的兴奋性变化(自我抑制)与预测编码所暗示的感觉精确度下降是一致的。这些结果建立了一个模型的面部有效性,该模型可用于探索人类体内β振荡动力学基础的层流相互作用。我们的经典M1模型可能对表征介导与运动障碍(如中风或帕金森氏病)相关的病理生理β动态的突触机制有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号