首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Non-enzymatic N-acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S-acetylated Thiol Intermediate Sensitive to Glyoxalase II
【2h】

Non-enzymatic N-acetylation of Lysine Residues by AcetylCoA Often Occurs via a Proximal S-acetylated Thiol Intermediate Sensitive to Glyoxalase II

机译:乙酰辅酶通常通过对乙二醛酶II敏感的近端S-乙酰化硫醇发生赖氨酸残基的非酶N-乙酰化反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionAcetyl coenzyme A (AcCoA) is central to mitochondrial metabolism, providing acetyl groups to the citric acid cycle from the oxidation of carbohydrate and fat (). One way that AcCoA affects mitochondria is through N-acetylation of the ε-amino of lysine residues on mitochondrial proteins. The significance of N-acetylation is implied by the existence of a mitochondrial deacetylase, sirtuin 3 (Sirt3), which uses NAD+ to remove acetyl groups from lysine residues, and by the observation that Sirt3 is important in the pathology of a range of degenerative diseases, including cancer, aging, and diabetes ().Although the enzymatic basis of the deacetylation of N-acetylated lysine residues by Sirt3 is established, the mechanism by which mitochondrial AcCoA acetylates lysine residues is less certain. Although a mitochondrial N-acetyltransferase (Gcn5L1) has been proposed (), more interesting in the context of degenerative disease is the observation that mitochondrial protein is non-enzymatically N-acetylated on lysine residues by AcCoA (, , , ). The mitochondrial concentration of coenzyme A (CoA) in vivo (∼1 mM) is usually higher than AcCoA (∼100–500 μM) (), but this shifts in the presence of fatty acids with AcCoA rising (∼1 mM) and CoA falling (∼100–300 μM). Consequently, both the mitochondrial concentration of AcCoA and the AcCoA/CoA ratio alter markedly upon changes to nutrition or exercise. Whether protein lysine acetylation is a damaging consequence of relying on AcCoA for metabolism or a regulatory pathway to respond to changes in AcCoA, the AcCoA/CoA ratio or NAD+ is unclear. Even so, Sirt3 plays a major pathophysiological role in reversing the damaging lysine N-acetylation of mitochondrial proteins that arises from exposure to excess AcCoA.The mechanism proposed for non-enzymatic lysine acetylation was a nucleophilic attack by the side-chain amine on the acetyl carbonyl (). This direct reaction will be slow in the mitochondrial matrix (pH ∼7.8), because the pKa of a free lysine is ∼10.5. Although this rate can be enhanced by stabilization of the amine, protein cysteine residues are on average better nucleophiles (pKa ∼8.5) (). Because cysteine-containing peptides can be directly S-acetylated by AcCoA in vitro (), we postulated that S-acetylation of protein cysteine thiols would be far higher than N-acetylation of lysine amines. Here we show that S-acetylation is a frequent modification and that non-enzymatic N-acetylation of lysine residues by AcCoA occurs predominantly via a proximal S-acetylated thiol intermediate. We also show that glutathione (GSH) and glyoxalase II (Glo2), also known as hydroxyacyl glutathione hydrolase (HAGH), together can limit S-acetylation and consequently N-acetylation.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介乙酰辅酶A(AcCoA)对线粒体代谢至关重要,可为柠檬酸提供乙酰基酸循环由碳水化合物和脂肪的氧化而来。 AcCoA影响线粒体的一种方式是通过线粒体蛋白上赖氨酸残基的ε-氨基的N-乙酰化。线粒体脱乙酰基酶sirtuin 3(Sirt3)使用NAD + 去除赖氨酸残基上的乙酰基,并观察到Sirt3在尽管建立了Sirt3使N-乙酰化赖氨酸残基脱乙酰基化的酶学基础,但线粒体AcCoA乙酰化赖氨酸残基的机理尚不明确。尽管已经提出了线粒体N-乙酰基转移酶(Gcn5L1),但在退行性疾病方面更有趣的是观察到线粒体蛋白被AcCoA在赖氨酸残基上非酶法N-乙酰化(,,,)。体内的辅酶A(CoA)的线粒体浓度(〜1 mM)通常高于AcCoA(〜100–500μM)(),但是当脂肪酸存在时会发生变化,其中AcCoA升高(〜1 mM)和CoA下降(〜100–300μM)。因此,随着营养或运动的改变,AcCoA的线粒体浓度和AcCoA / CoA比率均发生显着变化。尚不清楚蛋白赖氨酸乙酰化是依赖于AcCoA进行代谢的破坏性结果还是响应于AcCoA,AcCoA / CoA比率或NAD + 的变化的调节途径。即便如此,Sirt3在逆转暴露于过量AcCoA引起的线粒体蛋白质的赖氨酸N-乙酰破坏性方面仍发挥着重要的病理生理作用。非酶赖氨酸乙酰化的机制是侧链胺对乙酰基的亲核攻击羰基()。由于游离赖氨酸的pKa约为10.5,因此在线粒体基质(pH约为7.8)中,这种直接反应会很慢。尽管可以通过胺的稳定化来提高该速率,但是蛋白质半胱氨酸残基平均而言是更好的亲核试剂(pKa〜8.5)。由于含半胱氨酸的肽可以在体外由AcCoA直接S-乙酰化,因此我们推测蛋白半胱氨酸硫醇的S-乙酰化要比赖氨酸胺的N-乙酰化高得多。在这里,我们显示S-乙酰化是一个经常性的修饰,赖氨酸残基被AcCoA的非酶N-乙酰化主要通过近端S-乙酰化的巯基中间体发生。我们还表明,谷胱甘肽(GSH)和乙二醛酶II(Glo2)(也称为羟酰基谷胱甘肽水解酶(HAGH))一起可以限制S-乙酰化并因此限制N-乙酰化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号