首页> 美国卫生研究院文献>Elsevier Sponsored Documents >SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs
【2h】

SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs

机译:SAF-A通过与染色质相关的RNA寡聚化来调节相间染色体结构。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionMammalian interphase chromosomes are organized into topologically constrained chromatin domains (), which are responsive to transcription () and local gene density (). Gene-poor genomic regions have a compact large-scale chromatin structure, while regions rich in genes and transcriptional activity have a more decompacted structure (, , ). Previously, we suggested that transcription and topoisomerase activities, that occur at the gene level, alter local topology to form supercoiling domains () and these correspond to structures seen by Hi-C (). It is unclear, however, how these processes could impact on large-scale chromatin structures.In contrast to mitosis, where topoisomerases and condensin play a central role in scaffolding chromatin (), the molecular underpinnings of interphase domains are poorly characterized () and their functional impact remains unknown. A “nuclear matrix” consisting of insoluble proteins and RNA particles was proposed to organize interphase chromatin architecture (, ), maintain chromosome territories (), enhance gene expression, and provide a platform for nuclear processes, but chromatin mobility in vivo (, ) and the lack of a stable nucleoprotein structure in live cells undermined the concept (href="#bib29" rid="bib29" class=" bibr popnode">Hancock, 2000). However, the structural contribution of RNA to chromatin organization remains undisputed: a large proportion of chromatin by mass corresponds to RNA (href="#bib31" rid="bib31" class=" bibr popnode">Holmes et al., 1972), mostly belonging to the loosely termed chromatin-associated RNA (caRNA) class. The functional roles of caRNAs are hinted by the observation that they are stably associated with interphase chromosome territories (href="#bib20" rid="bib20" class=" bibr popnode">Fey et al., 1986, href="#bib27" rid="bib27" class=" bibr popnode">Hall and Lawrence, 2016) and their disruption leads to chromatin condensation (href="#bib28" rid="bib28" class=" bibr popnode">Hall et al., 2014). The molecular basis for this is unknown, but it is thought heterogeneous ribonucleoprotein particles (hnRNPs) provide a docking platform to associate with nascent transcripts (href="#bib41" rid="bib41" class=" bibr popnode">Melé and Rinn, 2016) while caRNAs might influence chromatin structure (href="#bib9" rid="bib9" class=" bibr popnode">Caudron-Herger and Rippe, 2012). Recent studies have been unable to find specific species of RNA, similar to XIST, which could regulate large-scale chromatin structure, suggesting instead that diverse caRNAs transiently interact with chromatin, forming a dynamic compartment (href="#bib41" rid="bib41" class=" bibr popnode">Melé and Rinn, 2016). However, a refinement of this model would require insight into how the interaction of proteins with caRNAs can regulate chromatin structure.Scaffold attachment factor A (SAF-A), also known as heterogeneous ribonucleoprotein U (HNRNP-U) (href="#bib35" rid="bib35" class=" bibr popnode">Kiledjian and Dreyfuss, 1992, href="#bib50" rid="bib50" class=" bibr popnode">Romig et al., 1992), is an abundant protein reported to bind scaffold attachment regions (href="#bib24" rid="bib24" class=" bibr popnode">Göhring et al., 1997) and involved in several cellular processes such as pre-mRNA splicing (href="#bib59" rid="bib59" class=" bibr popnode">Xiao et al., 2012), accumulation at DNA damage sites (href="#bib8" rid="bib8" class=" bibr popnode">Britton et al., 2014) and Xist-mediated transcriptional silencing (href="#bib40" rid="bib40" class=" bibr popnode">McHugh et al., 2015). Structurally, SAF-A contains a low complexity RNA-binding RGG repeat and an ATP-binding AAA+ domain, known to facilitate the assembly (href="#bib17" rid="bib17" class=" bibr popnode">Erzberger and Berger, 2006) and operation of diverse protein and nucleoprotein machines. Other well-characterized AAA+ domain-containing proteins, such as replication factor C (RFC) and DnaA, oligomerize through their AAA domains, often with nucleic acids, to form higher molecular weight structures. We characterized SAF-A activity to understand the relationship between its structure and function in regulating chromatin architecture.We are able to demonstrate that SAF-A regulates transcriptionally active large-scale chromatin structures in human cells. Using functional mutants of SAF-A, we dissect the underlying molecular mechanisms to show that SAF-A can cycle from a monomeric to a homo-oligomeric state through ATP binding and caRNAs; concomitantly, SAF-A oligomerization drives chromatin decompaction while monomerization compacts large-scale chromatin organization.We suggest that SAF-A interacts with caRNAs to form a chromatin mesh (href="#bib45" rid="bib45" class=" bibr popnode">Nozawa and Gilbert, 2014), and unlike the historical concept of a nuclear matrix, is highly responsive to ongoing transcription and can undergo dynamic cycles of assembly and disassembly. Surprisingly, a gross change in chromatin structure has limited effect on transcription indicating that gene-level chromatin structure is important for regulating transcription, rather than large-scale chromatin architecture. Although changes in large-scale chromatin structure do not influence gene expression, an alteration in the chromatin landscape had a dramatic effect on genome stability; loss or mutation of SAF-A triggered a DNA damage response and chromosomal instability.To unify the structural and enzymatic aspects of SAF-A function, we speculate that SAF-A/RNA interactions will drive the formation of local chromatin domains or micro-bodies (href="#bib7" rid="bib7" class=" bibr popnode">Brackley et al., 2016), while its role in regulating large-scale chromatin structures will partition the genome into functionally diverse segments. This process is essential for maintaining genome stability and could provide a constraint to maintain clusters of genes together in the genome during evolution (href="#bib21" rid="bib21" class=" bibr popnode">Ghanbarian and Hurst, 2015).
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介哺乳动物间期染色体被组织成拓扑受约束的染色质域(),它们对转录有响应()和局部基因密度()。缺乏基因的基因组区域具有紧凑的大规模染色质结构,而富含基因和转录活性的区域则具有更紧凑的结构(,)。以前,我们建议在基因水平上发生的转录和拓扑异构酶活性会改变局部拓扑结构以形成超螺旋结构域(),并且这些结构对应于Hi-C所见的结构()。然而,目前尚不清楚这些过程如何影响大规模染色质结构。与有丝分裂相反,拓扑异构酶和缩合蛋白在支架染色质中起着核心作用(),相间结构域的分子基础缺乏良好的表征()及其功能影响仍然未知。提出了一种由不溶性蛋白质和RNA颗粒组成的“核基质”来组织相间染色质结构(,),维持染色体区域(),增强基因表达,并为核过程提供平台,但是染色质在活体内(,)和活细胞中缺乏稳定的核蛋白结构破坏了这一概念(href="#bib29" rid="bib29" class=" bibr popnode">汉考克,2000 )。然而,RNA对染色质组织的结构贡献仍然是无可争议的:大量的染色质按质量计对应于RNA(href="#bib31" rid="bib31" class=" bibr popnode"> Holmes et al。,1972 ),主要属于松散的染色质相关RNA(caRNA)类。观察到它们与相间染色体区域稳定相关,提示了caRNA的功能作用(href="#bib20" rid="bib20" class=" bibr popnode"> Fey等人,1986 ,href="#bib27" rid="bib27" class=" bibr popnode"> Hall and Lawrence,2016 ),它们的破坏会导致染色质凝聚(href =“#bib28” rid =“ bib28“ class =” bibr popnode“> Hall等人,2014 )。尚不清楚其分子基础,但据认为异质核糖核蛋白颗粒(hnRNPs)提供了与新生转录本相关的停靠平台(href="#bib41" rid="bib41" class=" bibr popnode">Melé和Rinn,2016 ),而caRNA可能会影响染色质结构(href="#bib9" rid="bib9" class=" bibr popnode"> Caudron-Herger和Rippe,2012 )。最近的研究未能找到类似于XIST的可以调节大规模染色质结构的特定RNA种类,这表明不同的caRNA会与染色质瞬时相互作用,形成一个动态区室(href =“#bib41” rid = “ bib41” class =“ bibr popnode”>Melé和Rinn,2016 )。然而,对该模型的完善需要深入了解蛋白质与caRNA的相互作用如何调节染色质结构。脚手架附着因子A(SAF-A),也称为异源核糖核蛋白U(HNRNP-U)(href =“ #bib35“ rid =” bib35“ class =” bibr popnode“> Kiledjian和Dreyfuss,1992 ,href="#bib50" rid="bib50" class=" bibr popnode"> Romig等人, 1992 )是一种能够结合支架附着区的丰富蛋白质(href="#bib24" rid="bib24" class=" bibr popnode">Göhring等,1997 )和参与了多个细胞过程,例如前mRNA剪接(href="#bib59" rid="bib59" class=" bibr popnode"> Xiao et al。,2012 ),DNA损伤部位的积累( href="#bib8" rid="bib8" class=" bibr popnode"> Britton等人,2014 )和Xist介导的转录沉默(href =“#bib40” rid =“ bib40 “ class =” bibr popnode“> McHugh等人,2015 )。从结构上讲,SAF-A包含低复杂度的RNA结合RGG重复序列和ATP结合AAA + 域,已知可促进组装(href =“#bib17” rid =“ bib17”类=“ bibr popnode”> Erzberger和Berger,2006 )以及各种蛋白质和核蛋白机器的操作。其他具有良好特征的AAA + 域蛋白,例如复制因子C(RFC)和DnaA,通常通过核酸通过其AAA域寡聚,形成更高分子量的结构。我们对SAF-A活性进行了表征,以了解其结构与调节染色质结构的功能之间的关系。我们能够证明SAF-A调节人细胞中转录活性的大规模染色质结构。使用SAF-A的功能性突变体,我们剖析了潜在的分子机制,以显示SAF-A可以通过ATP结合和caRNA从单体状态循环为同低聚状态。伴随地,SAF-A低聚驱动染色质分解,而单体化则压缩大规模染色质组织。我们建议SAF-A与caRNA相互作用形成染色质网格(href =“#bib45” rid =“ bib45” class =“ bibr popnode “> Nozawa和Gilbert,2014 ),与核基质的历史概念不同,它对正在进行的转录高度敏感,并且可以经历动态的组装和拆卸循环。出乎意料的是,染色质结构的总体变化对转录的作用有限,表明基因水平的染色质结构对于调节转录很重要,而不是大规模的染色质结构。尽管大规模染色质结构的改变不会影响基因表达,但是染色质景观的改变对基因组稳定性具有显着影响。 SAF-A的缺失或突变触发了DNA损伤反应和染色体不稳定。为了统一SAF-A功能的结构和酶学方面,我们推测SAF-A / RNA相互作用将驱动局部染色质域或微体的形成。 (href="#bib7" rid="bib7" class=" bibr popnode"> Brackley et al。,2016 ),尽管它在调节大规模染色质结构中的作用会将基因组划分为功能多样的段。这个过程对于维持基因组的稳定性至关重要,并且可能会限制进化过程中基因簇在基因组中的维持(href="#bib21" rid="bib21" class=" bibr popnode"> Ghanbarian和Hurst,2015年)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号