class='head no_bottom_margin' id='sec1title'>Int'/> NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control
【2h】

NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control

机译:NK细胞刺激cDC1募集到肿瘤微环境中促进癌症的免疫控制。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe tumor microenvironment (TME) contains stromal cells and immune cells that shape cancer development and impact the response to tumor therapy (, ). Intratumoral immune cells comprise lymphocytes, such as T cells, B, cells and natural killer (NK) cells, and diverse populations of myeloid cells, including granulocytes, monocytes, macrophages, and dendritic cells (DCs) (, , ). The different myeloid cells within the TME fulfill distinct and sometimes opposing roles. Simplistically, intratumoral monocytes and M2-polarized macrophages can promote cancer cell growth, angiogenesis, and metastasis, as well as contribute to the establishment of an immunosuppressive environment. They are associated with tumor progression and poor clinical outcome (). In contrast, M1-polarized macrophages and DCs contribute to anti-tumor immunity and are associated with a favorable outcome ().The contribution of conventional DCs (cDCs) to anti-tumor immunity reflects their ability to present tumor antigens and to secrete cytokines that regulate T cell survival and effector function. cDCs can be divided into at least two subsets, conventional type 1 dendritic cells (cDC1) and conventional type 2 dendritic cells (cDC2) (, ). The cDC1 subset depends for its development on the transcription factor Batf3 and can be identified by the selective expression of the C-type lectin receptor DNGR-1 (aka CLEC9A) and the chemokine receptor XCR1 and, in non-lymphoid organs and in tumors, additional expression of the integrin αE (CD103) in the presence of low expression of CD11b. cDC1 are especially adept at taking up dead tumor cells and transporting tumor antigens to tumor-draining lymph nodes where they constitute the key DC subtype responsible for cross-priming anti-tumor CD8+ T cells (, ). In addition to this trafficking role, cDC1 also play a key role within tumors themselves. Intratumoral cDC1 attract T cells (), re-stimulate and expand tumor-specific CD8+ T cells (), and support T cell effector function by secreting interleukin (IL)-12 (). The overall importance of cDC1 in anti-tumor immunity is underscored by multiple studies demonstrating that the lack of cDC1 in Batf3−/− mice abolishes the rejection of immunogenic tumors and the response to adoptive T cell therapy and to immune checkpoint blockade (, href="#bib23" rid="bib23" class=" bibr popnode">Hildner et al., 2008, href="#bib41" rid="bib41" class=" bibr popnode">Salmon et al., 2016, href="#bib42" rid="bib42" class=" bibr popnode">Sánchez-Paulete et al., 2016, href="#bib46" rid="bib46" class=" bibr popnode">Spranger et al., 2015).Human cDC1 are very rare within the TME and often excluded from early tumor stages, which might hinder anti-tumor immunity and contribute to cancer progression. Although intratumoral cDC1 have not been investigated in humans in as much detail as in mice, cDC1 abundance in human melanoma correlates with T cell infiltration and the ratio of cDC1-selective transcripts over macrophage-restricted transcripts can be used as a prognostic marker for cancer patient survival (href="#bib4" rid="bib4" class=" bibr popnode">Broz et al., 2014, href="#bib47" rid="bib47" class=" bibr popnode">Spranger et al., 2017). Therapies aimed at increasing cDC1 abundance in tumors or facilitating their activation may therefore boost anti-tumor immunity and potentially increase the responsiveness of cancer patients to immunotherapy (href="#bib4" rid="bib4" class=" bibr popnode">Broz et al., 2014, href="#bib41" rid="bib41" class=" bibr popnode">Salmon et al., 2016, href="#bib47" rid="bib47" class=" bibr popnode">Spranger et al., 2017). However, the mechanisms determining the abundance of cDC1 at the tumor site remain enigmatic and it is unclear whether cDC1 are actively recruited into the TME and if this requires the participation of other cell types.Prostaglandin E2 (PGE2) is a prostanoid with immune-regulatory function that is produced by many cell types and can further be released upon cell death (href="#bib19" rid="bib19" class=" bibr popnode">Hangai et al., 2016). We previously found that many tumors secrete PGE2 to suppress anti-cancer immunity (href="#bib54" rid="bib54" class=" bibr popnode">Zelenay et al., 2015). In such tumors, genetic ablation of cyclooxygenases, encoded by the Ptgs1 and Ptgs2 genes, leads to inability to produce PGE2 and renders the cancers susceptible to cDC1-dependent CD8+ T cell-mediated immune control (href="#bib54" rid="bib54" class=" bibr popnode">Zelenay et al., 2015). Mouse tumors lacking PGE2 production are therefore an ideal system in which to dissect the mechanisms underlying cDC1 accumulation. Here, we show that such tumors are infiltrated by cDC1, and we identify a key role for intratumoral NK cells in producing CCL5 and XCL1 chemokines that promote cDC1 recruitment. We provide evidence that a similar NK cell/chemokine functional axis determines cDC1 abundance in human melanoma, breast cancer, lung cancer, and head and neck squamous cell carcinoma and show that it impacts on patient survival. Finally, we uncover a role for PGE2 both in diminishing NK cell survival and function and in downregulating cDC1 responsiveness to chemoattractants. These data provide insights into the control of cDC1 accumulation in tumors in mice and humans and support the rational design of therapies aiming to increase cDC1 numbers in tumors that might help overcoming resistance to current immunotherapies.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介肿瘤微环境(TME)包含基质细胞和免疫细胞,它们会影响癌症的发展和影响对肿瘤治疗的反应(,)。肿瘤内免疫细胞包括淋巴细胞,例如T细胞,B细胞和自然杀伤(NK)细胞,以及各种不同的髓样细胞群体,包括粒细胞,单核细胞,巨噬细胞和树突状细胞(DC)(``,'')。 TME中的不同髓样细胞履行不同的角色,有时甚至是相反的角色。简单地说,肿瘤内单核细胞和M2极化的巨噬细胞可以促进癌细胞的生长,血管生成和转移,并有助于建立免疫抑制环境。它们与肿瘤进展和不良的临床预后相关()。相比之下,M1极化的巨噬细胞和DC有助于抗肿瘤免疫,并具有良好的结局()。常规DC(cDC)对抗肿瘤免疫的贡献反映了它们呈递肿瘤抗原和分泌细胞因子的能力。调节T细胞存活和效应子功能。 cDC可以分为至少两个子集,常规1型树突状细胞(cDC1)和常规2型树突状细胞(cDC2)(,)。 cDC1子集依赖于其转录因子Batf3的发育,并且可以通过在非淋巴器官和肿瘤中选择性表达C型凝集素受体DNGR-1(又名CLEC9A)和趋化因子受体XCR1来鉴定。在CD11b低表达的情况下整合素αE(CD103)的其他表达。 cDC1特别擅长吸收死去的肿瘤细胞并将肿瘤抗原转运到引流肿瘤的淋巴结中,在那里它们构成负责交叉引发抗肿瘤CD8 + T细胞的关键DC亚型(,)。除了这种运输作用外,cDC1在肿瘤本身内也起着关键作用。肿瘤内cDC1吸引T细胞(),重新刺激和扩展肿瘤特异性CD8 + T细胞(),并通过分泌白介素(IL)-12()支持T细胞效应子功能。多项研究强调了cDC1在抗肿瘤免疫中的总体重要性,表明Batf3 -/-小鼠中cDC1的缺乏消除了免疫原性肿瘤的排斥以及对过继性T细胞疗法和免疫检查点封锁(,href="#bib23" rid="bib23" class=" bibr popnode"> Hildner et al。,2008 ,href =“#bib41” rid =“ bib41”类=“ bibr popnode”> Salmon等,2016 ,href="#bib42" rid="bib42" class=" bibr popnode">Sánchez-Paulete等,2016 , href="#bib46" rid="bib46" class=" bibr popnode"> Spranger等人,2015 )。人cDC1在TME中非常罕见,通常被排除在肿瘤的早期阶段,这可能阻碍抗肿瘤免疫力并促进癌症进展。尽管尚未像小鼠一样详细地研究人体内的肿瘤内cDC1,但人黑素瘤中cDC1的丰度与T细胞浸润相关,并且cDC1选择性转录本与巨噬细胞限制性转录本的比率可以用作癌症患者的预后标志物生存(href="#bib4" rid="bib4" class=" bibr popnode"> Broz等人,2014 ,href =“#bib47” rid =“ bib47” class =“ bibr popnode“> Spranger等人,2017 )。因此,旨在增加肿瘤中cDC1丰度或促进其激活的疗法可能会增强抗肿瘤免疫力,并可能增加癌症患者对免疫疗法的反应性(href="#bib4" rid="bib4" class=" bibr popnode"> Broz et al。,2014 ,href="#bib41" rid="bib41" class=" bibr popnode"> Salmon et al。,2016 ,href =“#bib47” rid =“ bib47” class =“ bibr popnode”> Spranger等人,2017 )。然而,确定肿瘤部位cDC1丰度的机制仍是未知的,目前尚不清楚cDC1是否被积极招募入TME中,是否需要其他细胞类型的参与。前列腺素E2(PGE2)是一种具有免疫调节作用的前列腺素。功能由多种细胞类型产生并在细胞死亡后进一步释放(href="#bib19" rid="bib19" class=" bibr popnode"> Hangai等人,2016 )。我们先前发现许多肿瘤会分泌PGE2来抑制抗癌免疫力(href="#bib54" rid="bib54" class=" bibr popnode"> Zelenay et al。,2015 )。在此类肿瘤中,由Ptgs1和Ptgs2基因编码的环氧合酶的遗传消融,导致无法产生PGE2,并使癌症容易受到cDC1依赖性CD8 + T细胞介导的免疫控制(href =“#bib54” rid =“ bib54” class =“ bibr popnode “> Zelenay等人,2015 )。因此,缺乏PGE2产生的小鼠肿瘤是一个理想的系统,可以剖析cDC1积累的潜在机制。在这里,我们显示了此类肿瘤被cDC1浸润,并且我们确定了肿瘤内NK细胞在产生促进cDC1募集的CCL5和XCL1趋化因子中的关键作用。我们提供的证据表明,类似的NK细胞/趋化因子功能轴决定了人黑素瘤,乳腺癌,肺癌和头颈部鳞状细胞癌中cDC1的丰度,并表明它对患者的生存产生影响。最后,我们揭示了PGE2在减少NK细胞存活和功能以及下调cDC1对化学引诱剂的反应中的作用。这些数据提供了对小鼠和人类肿瘤中cDC1积累控制的见解,并支持旨在增加肿瘤中cDC1数量的疗法的合理设计,这可能有助于克服对当前免疫疗法的耐药性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号