class='kwd-title'>Abbreviations: CZ(s), climate '/> Water productivity of rainfed maize and wheat: A local to global perspective
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Water productivity of rainfed maize and wheat: A local to global perspective
【2h】

Water productivity of rainfed maize and wheat: A local to global perspective

机译:雨养玉米和小麦的水生产率:从地方到全球的角度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="kwd-title">Abbreviations: CZ(s), climate zone(s); Es:ETw, proportion of ETw evaporated from the soil during the crop cycle; ETw, seasonal water-limited potential crop evapotranspiration (mm); ETwPOSTFETw, proportion of ETw after flowering; ETo, reference grass-based evapotranspiration during the crop cycle (mm); VPD, daytime vapor pressure deficit (kPa); WP, water productivity (kg ha−1 mm-1); WPa, actual on-farm water productivity (kg ha−1 mm-1); WPg, water productivity gap (kg ha−1 mm-1); WPw, water-limited potential water productivity for rainfed crops (kg ha−1 mm-1); Ya, actual on-farm yield (Mg ha-1); Yw, water-limited yield potential (Mg ha-1) class="kwd-title">Keywords: Water productivity, Yield, Wheat, Maize, Management, Spatial framework class="head no_bottom_margin" id="abs0015title">AbstractWater productivity (WP) is a robust benchmark for crop production in relation to available water supply across spatial scales. Quantifying water-limited potential (WPw) and actual on-farm (WPa) WP to estimate WP gaps is an essential first step to identify the most sensitive factors influencing production capacity with limited water supply. This study combines local weather, soil, and agronomic data, and crop modeling in a spatial framework to determine WPw and WPa at local and regional levels for rainfed cropping systems in 17 (maize) and 18 (wheat) major grain-producing countries representing a wide range of cropping systems, from intensive, high-yield maize in north America and wheat in west Europe to low-input, low-yield maize systems in sub-Saharan Africa and south Asia. WP was calculated as the quotient of either water-limited yield potential or actual yield, and simulated crop evapotranspiration. Estimated WPw upper limits compared well with maximum WP reported for field-grown crops. However, there was large WPw variation across regions with different climate and soil (CV = 29% for maize and 27% for wheat), which cautions against the use of generic WPw benchmarks and highlights the need for region-specific WPw. Differences in simulated evaporative demand, crop evapotranspiration after flowering, soil evaporation, and intensity of water stress around flowering collectively explained two thirds of the variation in WPw. Average WP gaps were 13 (maize) and 10 (wheat) kg ha−1 mm−1, equivalent to about half of their respective WPw. We found that non-water related factors (i.e., management deficiencies, biotic and abiotic stresses, and their interactions) constrained yield more than water supply in ca. half of the regions. These findings highlight the opportunity to produce more food with same amount of water, provided limiting factors other than water supply can be identified and alleviated with improved management practices. Our study provides a consistent protocol for estimating WP at local to regional scale, which can be used to understand WP gaps and their mitigation.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ kwd-title”>缩写: CZ,气候带; Es:ETw,在作物生长周期中从土壤蒸发的ETw比例; ETw,季节性水分受限的潜在作物蒸散量(mm); ETwPOSTFETw,开花后ETw的比例; ETo,参考作物周期中基于草的蒸散量(毫米); VPD,白天蒸气压不足(kPa); WP,水生产率(kg ha -1 mm -1 ); WPa,实际农田水生产率(kg ha −1 mm -1 ); WPg,水生产率差距(kg ha -1 mm -1 ); WPw,雨养作物的水分受限潜在水分生产率(kg ha -1 mm -1 );是的,农场的实际产量(Mg ha -1 ); Yw,限水单产(Mg ha -1 ) class =“ kwd-title”>关键字:水分生产率,产量,小麦,玉米,管理,空间框架< h2 class =“ head no_bottom_margin” id =“ abs0015title”>摘要水生产率(WP)是作物产量相对于整个空间尺度可用水的可靠基准。量化缺水潜力(WPw)和实际农田(WPa)WP以估算WP差距是确定影响有限供水的最敏感因素的重要的第一步。这项研究结合了当地的天气,土壤和农艺数据,并在空间框架中进行了作物建模,以确定17个(玉米)和18个(小麦)主要谷物生产国的雨养作物系统在地方和区域一级的WPw和WPa。从北美洲的集约高产玉米和西欧的小麦到撒哈拉以南非洲和南亚的低投入低产玉米系统,范围广泛的耕作制度。 WP计算为水限制产量潜力或实际产量与模拟作物蒸散量的商。估计的WPw上限与田间作物报告的最大WP相比较。但是,在不同气候和土壤的地区之间,WPw差异很大(玉米的CV = 29%,小麦的CV = 29%),这提醒不要使用通用的WPw基准,并强调需要针对特定​​地区的WPw。模拟的蒸发需求,开花后作物的蒸散量,土壤蒸发以及开花前后水分胁迫强度的差异共同解释了WPw变化的三分之二。平均WP差距为13(玉米)和10(小麦)kg ha -1 mm -1 ,大约相当于各自WPw的一半。我们发现,与水无关的因素(即管理缺陷,生物和非生物胁迫及其相互作用)对产量的约束比对供水的约束更大。一半的地区。这些发现凸显了用相同数量的水生产更多食物的机会,只要可以通过改进的管理实践来识别和缓解除供水以外的其他限制因素。我们的研究提供了一个一致的协议,用于在本地到区域范围内估算WP,可用于了解WP差距及其缓解措施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号