class='head no_bottom_margin' id='sec1title'>Int'/> Germinal Center B Cells Replace Their Antigen Receptors in Dark Zones and Fail Light Zone Entry when Immunoglobulin Gene Mutations are Damaging
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Germinal Center B Cells Replace Their Antigen Receptors in Dark Zones and Fail Light Zone Entry when Immunoglobulin Gene Mutations are Damaging
【2h】

Germinal Center B Cells Replace Their Antigen Receptors in Dark Zones and Fail Light Zone Entry when Immunoglobulin Gene Mutations are Damaging

机译:当免疫球蛋白基因突变受损时生发中心B细胞在暗区和亮区进入时替换其抗原受体

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe affinity and breadth of antibodies improves over the course of immune responses as a consequence of antibody affinity maturation in germinal centers (GCs) (, ). GCs are specialized transient structures that form within B cell follicles in the days following an infection or immunization and can persist for periods of a few of weeks to many months depending upon the nature of the challenge. GCs are anatomically divided into two distinct zones known as light zones (LZs) and dark zones (DZs), with the former forming proximal to the site of antigen entry. LZs are clearly distinguishable by the presence of specialized stromal cells known as follicular dendritic cells (FDCs), which express very high amounts of Fc and complement receptors that sequester antigen-containing immune complexes. DZs are identified by the relative absence of FDCs and by the higher density of proliferating GC B cells.Antibody affinity enhancements occur through iterative rounds of immunoglobulin variable region (IgV) gene somatic hypermutation (SHM) and selection involving GC B cells transitioning back and forth between DZs and LZs. Movement of GC B cells between the two zones is associated with changes in behavior and phenotype (, , ). Expression of Aicda (, , ), the gene encoding activation induced cytidine deaminase (AID), is higher in DZ GC B cells. AID catalyzes the deamination of cytosines to uracils, which in turn recruits various error prone repair pathways that cause nucleotide substitutions, additions, or deletions. Mutations in IgV genes are introduced at frequencies of approximately 10−3 nucleotides/division, approximately 106-fold above background mutation rates (). Following antibody diversification in DZs, somatically mutated GC B cells reduce surface expression of the chemokine receptor CXCR4 and migrate to LZs, where they test their newly minted receptors through “selection,” a competitive process that involves the acquisition of antigen from FDCs and the presentation of processed peptides to T follicular helper (Tfh) cells (, , , , ). Rare cells in which somatic mutations cause antibody affinity improvements are thought to be preferentially selected as a result of them internalizing and processing more antigen to limiting numbers of Tfh cells, thereby driving antibody affinity maturation.It has become increasingly evident that humoral immune responses are not always best served by rapidly expanding the highest affinity B cell clones at the expense of all others (, href="#bib31" rid="bib31" class=" bibr popnode">Mesin et al., 2016). For example, the unmutated common ancestors of HIV broadly neutralizing antibodies (bnAbs) often are of very low affinities and only acquire neutralizing potential after accumulating a slew of somatic mutations (href="#bib19" rid="bib19" class=" bibr popnode">Kelsoe and Haynes, 2017, href="#bib54" rid="bib54" class=" bibr popnode">West et al., 2014). While HIV bnAbs may represent extreme examples when it comes to mutation loads, simpler antibodies such as those arising during responses to influenza A infections may also mature in a stepwise process (href="#bib25" rid="bib25" class=" bibr popnode">Lingwood et al., 2012). Moreover, secondary memory B cell responses to viral variants and re-assortments benefit from antibody diversification in the GC during the primary challenge (href="#bib34" rid="bib34" class=" bibr popnode">Pappas et al., 2014, href="#bib38" rid="bib38" class=" bibr popnode">Purtha et al., 2011). As such, the preferential selection and expansion of high affinity B cells should not come at the expense of retaining breadth. Consistent with such a notion, two recent studies tracked clonal participation in GCs formed following immunization with complex protein antigens and reported that, while affinity enhancements with time were evident, GCs were remarkably permissive to the retention of low to moderate affinity cells (href="#bib22" rid="bib22" class=" bibr popnode">Kuraoka et al., 2016, href="#bib47" rid="bib47" class=" bibr popnode">Tas et al., 2016). Therefore, GC B cell selection might be as much about screening new pools of somatically mutated cells for their ability to still bind antigen as it is about expanding the very best clones (href="#bib6" rid="bib6" class=" bibr popnode">Bannard and Cyster, 2017). This is necessary because the random nature of SHM means that it is far more likely to negatively impact antigen-binding or be harmful to antibody structure than it is to increase affinity.The dynamics of GC B cell responses have been intensively studied in recent years with direct measurements of cell movement between zones and states revealing that cells undergo on average two cell divisions between each selection event (href="#bib15" rid="bib15" class=" bibr popnode">Gitlin et al., 2015, href="#bib14" rid="bib14" class=" bibr popnode">Gitlin et al., 2014), inclusive of the one initiated in the LZ, and that approximately half of all DZ cells transition back to the LZ every 4 hr period (href="#bib31" rid="bib31" class=" bibr popnode">Mesin et al., 2016, href="#bib50" rid="bib50" class=" bibr popnode">Victora et al., 2010). Therefore, the period between a cell somatically mutating its immunoglobulin genes and it entering the selection process is probably quite short (href="#bib8" rid="bib8" class=" bibr popnode">Bannard et al., 2016). This raises the question of whether GC B cells actively replace their BCRs during the intervening period so that they are selected while only expressing the “new” mutated variants. When membrane immunoglobulin half-lives have been measured in follicular B cells, they were found to be long, in the range of 20–80 hr (href="#bib5" rid="bib5" class=" bibr popnode">Andersson et al., 1974). While it is easy to rationalize that GC B cells acquiring affinity enhancing mutations can be preferentially selected without need for complete receptor replacement, it is less clear how detrimental or affinity lowering mutations might be screened out, as is required for diversification, without BCR turnover.Here, we determined the stage at which pre-SHM antigen receptor complexes are degraded in GC B cells by correlating the acquisition of harmful mutations with the presence or absence of membrane BCRs. Within the DZ, although some cells displayed high surface BCR levels despite carrying damaging mutations in their immunoglobulin genes, two thirds of the cells with that mutation type had low to negligible surface BCR expression, indicating that complete receptor turnover had already occurred. GC B cells carrying damaging mutations did not accumulate in LZ populations as might be predicted if newly minted receptors are first tested at that phase. Instead, apoptosis of cells lacking surface BCR complexes was triggered while cells were still in the DZ state. We propose that the turnover of BCR complexes and the testing of antibody functional integrity following SHM in the DZ prevents the accumulation of cells carrying damaging mutations and facilitates accurate selection for antigen-binding ability when GC B cells reach the LZ.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介由于抗体的作用,抗体的亲和力和广度随着免疫反应的进程而提高生发中心(GC)中的亲和力成熟(,)。 GC是一种特殊的瞬时结构,在感染或免疫后的几天内会在B细胞的卵泡中形成,并且根据攻击的性质可能会持续数周至数月。 GC在解剖学上分为两个不同的区域,分别称为亮区(LZs)和暗区(DZs),前者在抗原进入位点附近形成。 LZ的明显区别是存在称为滤泡树突状细胞(FDC)的专门基质细胞,这些基质细胞表达非常大量的Fc和补体受体,这些受体会隔离含抗原的免疫复合物。 DZs通过FDC的相对缺失和增殖的GC B细胞的更高密度来鉴定。抗体亲和力的增强是通过免疫球蛋白可变区(IgV)基因体细胞超突变(SHM)的迭代回合以及涉及GC B细胞来回转换的选择来实现的在DZ和LZ之间。 GC B细胞在两个区域之间的移动与行为和表型(,,)的变化有关。编码激活诱导的胞苷脱氨酶(AID)的基因Aicda(,,)的表达在DZ GC B细胞中更高。 AID催化胞嘧啶脱氨成尿嘧啶,进而募集了各种易于出错的修复途径,这些途径可导致核苷酸取代,添加或缺失。 IgV基因的突变以大约10 -3 个核苷酸/区的频率引入,比背景突变率高大约10 6 倍。在DZ中抗体多样化之后,体细胞突变的GC B细胞降低了趋化因子受体CXCR4的表面表达并迁移到LZ,在那里他们通过“选择”测试其新铸造的受体,这是一个竞争过程,涉及从FDC获取抗原并呈递抗原加工的肽对T滤泡辅助细胞(Tfh)的作用。体细胞突变导致抗体亲和力提高的稀有细胞被认为是优先选择的,因为它们内化并加工更多的抗原以限制Tfh细胞的数量,从而推动抗体亲和力成熟。越来越明显的是,体液免疫反应并非如此总是以快速扩展最高亲和力的B细胞克隆为最好的选择,而以其他所有的代价为代价(,href="#bib31" rid="bib31" class=" bibr popnode"> Mesin等,2016 )。例如,HIV广泛中和抗体(bnAbs)的未突变共同祖先通常具有非常低的亲和力,并且仅在积累了大量体细胞突变后才具有中和潜力(href =“#bib19” rid =“ bib19” class =“ bibr popnode“> Kelsoe and Haynes,2017 ,href="#bib54" rid="bib54" class=" bibr popnode"> West等人,2014 )。尽管HIV bnAb在突变负荷方面可能是极端的例子,但更简单的抗体(例如在应对A型流感感染期间产生的抗体)也可能会逐步逐步成熟(href =“#bib25” rid =“ bib25” class =“ bibr popnode“> Lingwood等人,2012 )。此外,在初次攻击过程中,GC中的抗体多样化使次级记忆B细胞对病毒变体和重配的反应受益(href="#bib34" rid="bib34" class=" bibr popnode"> Pappas等。 ,2014 ,href="#bib38" rid="bib38" class=" bibr popnode"> Purtha等人,2011 )。这样,高亲和力B细胞的优先选择和扩增不应以保持宽度为代价。与此概念一致,最近的两项研究跟踪了克隆人参与复杂蛋白抗原免疫后形成的GC的情况,并报告说,尽管随着时间的推移亲和力明显增加,但GC显着允许保留中低亲和力细胞(href =“#bib22” rid =“ bib22” class =“ bibr popnode”>仓敷等人,2016 ,href="#bib47" rid="bib47" class=" bibr popnode"> Tas et等,2016 )。因此,GC B细胞的选择可能与筛选新的体细胞突变细胞仍然结合抗原的能力以及扩大最佳克隆(href =“#bib6” rid =“ bib6” class = “ bibr popnode”> Bannard和Cyster,2017 )。这是必要的,因为SHM的随机性质意味着它对抗原结合的负面影响或对抗体结构的损害要比对亲和力的增加更大。近年来,GC B细胞反应的动力学已被广泛研究。直接测量区域和状态之间的细胞运动,揭示出每个选择事件之间细胞平均经历两次细胞分裂(href="#bib15" rid="bib15" class=" bibr popnode"> Gitlin等人,2015年< / a>,href="#bib14" rid="bib14" class=" bibr popnode"> Gitlin等人,2014 ),包括LZ中发起的一项,以及所有DZ单元每4小时会转换回LZ(href="#bib31" rid="bib31" class=" bibr popnode"> Mesin等人,2016 ,href =“# bib50“ rid =” bib50“ class =” bibr popnode“> Victora等,2010 )。因此,细胞体细胞突变其免疫球蛋白基因与进入选择过程之间的时间可能很短(href="#bib8" rid="bib8" class=" bibr popnode"> Bannard等,2016 < / a>)。这就提出了一个问题,即GC B细胞在干预期间是否主动替换其BCR,以便在仅表达“新”突变变体的情况下对其进行选择。当在卵泡B细胞中测量膜免疫球蛋白的半衰期时,发现它们很长,在20-80小时的范围内(href="#bib5" rid="bib5" class=" bibr popnode"> Andersson et al。,1974 )。尽管可以很容易地合理化地选择可以优先选择获得亲和力增强突变的GC B细胞而无需完全更换受体,但不清楚如何筛选出有害或亲和力降低突变,这是多样化所需要的,而无需BCR转换。在这里,我们通过将有害突变的获得与膜BCR的存在或不存在相关联,确定了GC B细胞中前SHM抗原受体复合物被降解的阶段。在DZ内,尽管某些细胞尽管在免疫球蛋白基因中发生了破坏性突变,但仍显示出较高的表面BCR水平,但这种突变类型的细胞中有三分之二的表面BCR表达低至可以忽略不计,表明已经发生了完全的受体更新。如果在该阶段首次检测到新产生的受体,可能会预测到携带破坏性突变的GC B细胞不会在LZ种群中积累。相反,当细胞仍处于DZ状态时,缺乏表面BCR复合物的细胞会被触发凋亡。我们提出,DCR中SHM之后BCR复合物的周转和抗体功能完整性的测试可防止携带破坏性突变的细胞积聚,并有助于在GC B细胞到达LZ时准确选择抗原结合能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号