class='head no_bottom_margin' id='sec1title'>Int'/> The Basolateral Amygdala Is Essential for Rapid Escape: A Human and Rodent Study
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >The Basolateral Amygdala Is Essential for Rapid Escape: A Human and Rodent Study
【2h】

The Basolateral Amygdala Is Essential for Rapid Escape: A Human and Rodent Study

机译:基底外侧杏仁核对快速逃脱至关重要:一项人类和啮齿类动物研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe amygdala is an almond-shaped group of nuclei in the temporal lobe that is crucial for defensive behaviors in all mammals, including humans (, ). The nuclei of the amygdala are partly of striatal origin (central amygdala [CeA]) and partly of cortical origin (basolateral amygdala [BLA]), with the BLA in particular having undergone a large evolutionary expansion in humans compared to rodents (). Cross-species translational research on the behavioral functions of this circuitry is thus essential. A seminal body of rodent research has delineated how amygdala circuitry controls defensive behaviors (, , , , , , , ), but cross-species translation is a challenge (), because in human studies, evidence of causal mechanisms and sub-region specificity are lacking.Recently, we identified a group of humans with focal, bilateral calcifications in the BLA; these patients can potentially provide such causal evidence. BLA damage in these individuals is caused by an extremely rare autosomal recessive disorder—Urbach-Wiethe disease (UWD) ()—which was introduced to South Africa with the arrival of Dutch-German settlers in 1652 and continued to spread locally because of the founder effect (). Using structural and functional neuroimaging methods in affected individuals, we recently demonstrated that, in this group, there is a focal bilateral neurodegeneration that is restricted to within the BLA without affecting CeA (). This group of individuals could therefore contribute significantly to cross-species translation of functions of the different nuclei in the amygdala.In rodents, the BLA is crucial for threat conditioning (href="#bib8" rid="bib8" class=" bibr popnode">Davis and Whalen, 2001). Although initial behavioral results in the South-African UWD population found that BLA pathology reduced acquisition of threat-potentiated startle (href="#bib29" rid="bib29" class=" bibr popnode">Klumpers et al., 2015), such pathology also increased vigilance for facial and bodily threat stimuli across multiple behavioral paradigms (href="#bib10" rid="bib10" class=" bibr popnode">de Gelder et al., 2014, href="#bib24" rid="bib24" class=" bibr popnode">Hortensius et al., 2016, href="#bib47" rid="bib47" class=" bibr popnode">Terburg et al., 2012). This hyper-vigilance for threat was also observed in response to non-consciously processed threat stimuli in a paradigm precluding cortical control (href="#bib47" rid="bib47" class=" bibr popnode">Terburg et al., 2012). This suggested that threat reactivity downstream of the BLA is potentiated by BLA damage (href="#bib33" rid="bib33" class=" bibr popnode">Liddell et al., 2005, href="#bib51" rid="bib51" class=" bibr popnode">van Honk et al., 2002, href="#bib52" rid="bib52" class=" bibr popnode">van Honk et al., 2005). In rodent models, there is also evidence that threat reactivity is increased after BLA inhibition (href="#bib35" rid="bib35" class=" bibr popnode">Macedo et al., 2006) and that anxious behaviors are increased by inhibition of BLA projections to the lateral CeA (CeL) (href="#bib49" rid="bib49" class=" bibr popnode">Tye et al., 2011). Recent evidence furthermore indicates that the CeL can act as a switch between passive—freezing—and active—escape—defensive behaviors, specifically due to inhibitory projections to the medial subdivision (CeM) and the brainstem (href="#bib5" rid="bib5" class=" bibr popnode">Ciocchi et al., 2010, href="#bib13" rid="bib13" class=" bibr popnode">Fadok et al., 2017, href="#bib19" rid="bib19" class=" bibr popnode">Gozzi et al., 2010, href="#bib21" rid="bib21" class=" bibr popnode">Haubensak et al., 2010, href="#bib48" rid="bib48" class=" bibr popnode">Tovote et al., 2016, href="#bib55" rid="bib55" class=" bibr popnode">Viviani et al., 2011). Given that the BLA-CeL pathway can activate these inhibitory projections to the CeM (href="#bib49" rid="bib49" class=" bibr popnode">Tye et al., 2011), we hypothesized that BLA input is necessary to induce the passive to active switch, that is the switch from freezing to active escape, in the CeA. Neuroimaging in humans indeed suggests that the BLA is involved in goal-directed active escape behavior (href="#bib38" rid="bib38" class=" bibr popnode">Mobbs et al., 2007), but direct and causal evidence for this model and its cross-species translation is currently unavailable.We therefore set out to investigate BLA-damaged human subjects in parallel with rodents with the aim of translating across species and elucidating the role of the BLA and CeA in active compared to passive defensive behaviors. Under threat, mammals, including humans, can either respond passively with defensive reactions, such as freezing, or actively by goal-directed actions, such as escape (href="#bib36" rid="bib36" class=" bibr popnode">McNaughton and Corr, 2004, href="#bib38" rid="bib38" class=" bibr popnode">Mobbs et al., 2007, href="#bib39" rid="bib39" class=" bibr popnode">Montoya et al., 2015). The neural mechanism that selects when to freeze and when to escape is, however, not well understood (href="#bib31" rid="bib31" class=" bibr popnode">LeDoux et al., 2017). Accordingly, we developed cross-species paradigms that extend recent research on responses to inescapable threat (href="#bib13" rid="bib13" class=" bibr popnode">Fadok et al., 2017, href="#bib29" rid="bib29" class=" bibr popnode">Klumpers et al., 2015) to situations where behavior can lead to successful escape. Outcome measures included behavioral escape performance and freezing, acoustic startle reflexes, fMRI, and ex vivo cell recordings.By comparing in both species individuals with and without a functional BLA, we identified a vital inhibitory control function of the BLA over passive defensive behaviors. This inhibitory control by the BLA was adaptively tuned, that is, selectively present in situations of imminent threat that requested rapid escape and not present in distant or inescapable threat conditions. Neuroimaging evidence in humans suggested that, to execute this inhibitory control function, the BLA acts on the CeA in order to influence the downstream brainstem and its initiation of passive defensive behavior. In rodents, we found that training by exposure to imminent escapable threat selectively upregulated BLA projections to a group of neurons in the CeL identifiable by their sensitivity to oxytocin. By increasing the oxytocin signaling in the CeA (href="#bib26" rid="bib26" class=" bibr popnode">Huber et al., 2005, href="#bib30" rid="bib30" class=" bibr popnode">Knobloch et al., 2012, href="#bib55" rid="bib55" class=" bibr popnode">Viviani et al., 2011), we rescued the responses to imminent escapable threat during downregulated function of the BLA. Together, these cross-species findings not only uncover a dynamically tuned regulation by the BLA of the CeA under conditions of imminent escapable threat but also show how this is mechanistically established by the BLA via activation of inhibitory projections from the CeL to CeM. Finally, this key role of the BLA in escape behavior is evolutionary conserved across humans and rodents.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介杏仁核是颞叶中一个杏仁形的核群,对于所有哺乳动物,包括人类的防御行为(,)。杏仁核的一部分是纹状体起源的(中央杏仁核[CeA]),一部分是皮质的核(基底外侧的杏仁核[BLA]),尤其是与啮齿类动物相比,该BLA在人类中发生了较大的进化。因此,对该电路行为功能的跨物种翻译研究至关重要。啮齿类动物研究的开创性研究已经阐明了杏仁核回路如何控制防御行为(,,,,,,,,,),但是跨物种的翻译是一个挑战(),因为在人类研究中,因果机制和子区域特异性的证据是最近,我们在BLA中鉴定出一群具有局灶性双侧钙化的人。这些患者可能会提供此类因果证据。这些人的BLA损害是由一种极为罕见的常染色体隐性遗传疾病-Urbach-Wiethe病(UWD)(Urbach-Wiethe疾病(UWD))引起的,该疾病于1652年随着荷兰-德国定居者的到来而传入南非,并由于创始人的缘故而继续在当地传播效果()。在受影响的人群中使用结构和功能性神经影像学方法,我们最近证明,在这一组中,局灶性双侧神经退行性变局限于BLA内而不影响CeA()。因此,这组人可能对杏仁核中不同核功能的跨物种翻译做出重要贡献。在啮齿动物中,BLA对于威胁调节至关重要(href =“#bib8” rid =“ bib8” class =“ bibr popnode“>戴维斯和沃伦,2001 )。虽然在南非UWD人群中的初步行为结果发现,BLA病理学降低了受威胁增强的惊吓的获得(href="#bib29" rid="bib29" class=" bibr popnode"> Klumpers等,2015 < / a>),这种病理还提高了对多种行为范式对面部和身体威胁刺激的警惕性(href="#bib10" rid="bib10" class=" bibr popnode"> de Gelder等人,2014 ,href="#bib24" rid="bib24" class=" bibr popnode"> Hortensius et al。,2016 ,href =“#bib47” rid =“ bib47” class =“ bibr popnode“> Terburg等人,2012 )。这种对威胁的高度警惕也可以在不进行皮层控制的范例中对无意识处理的威胁刺激做出反应而观察到(href="#bib47" rid="bib47" class=" bibr popnode"> Terburg等, 2012 )。这表明BLA下游的威胁反应性可通过BLA破坏来增强(href="#bib33" rid="bib33" class=" bibr popnode"> Liddell et al。,2005 ,href = “#bib51” rid =“ bib51” class =“ bibr popnode”>范洪克等人,2002 ,href="#bib52" rid="bib52" class=" bibr popnode">范洪克等,2005 )。在啮齿动物模型中,也有证据表明抑制BLA后威胁反应性增加(href="#bib35" rid="bib35" class=" bibr popnode"> Macedo et al。,2006 ),并且抑制BLA投射到外侧CeA(CeL)可以增加焦虑行为(href="#bib49" rid="bib49" class=" bibr popnode"> Tye等人,2011 )。最近的证据进一步表明,CeL可以充当被动-冻结-和主动-逃逸-防御行为之间的转换,特别是由于对内侧细分(CeM)和脑干的抑制性投射(href =“#bib5” =“ bib5” class =“ bibr popnode”>乔奥奇等人,2010 ,href="#bib13" rid="bib13" class=" bibr popnode"> Fadok等人,2017 ,href="#bib19" rid="bib19" class=" bibr popnode"> Gozzi等人,2010 ,href =“#bib21” rid =“ bib21” class =“ bibr popnode“> Haubensak等,2010 ,href="#bib48" rid="bib48" class=" bibr popnode"> Tovote等,2016 ,href = “#bib55” rid =“ bib55” class =“ bibr popnode”> Viviani等人,2011 )。假设BLA-CeL途径可以激活这些对CeM的抑制性预测(href="#bib49" rid="bib49" class=" bibr popnode"> Tye等人,2011 ),我们假设BLA输入对于在CeA中引起从被动到主动的转换(从冻结到主动逃生的转换)是必要的。实际上,人类的神经影像学表明BLA参与了目标定向的主动逃避行为(href="#bib38" rid="bib38" class=" bibr popnode"> Mobbs等人,2007 ),但目前尚无此模型及其跨物种翻译的直接和因果关系的证据。因此,我们着手与啮齿类动物平行调查受BLA破坏的人类受试者,以期跨物种翻译并阐明BLA和CeA的作用在主动与被动防御行为相比。在受到威胁时,包括人类在内的哺乳动物可以被动防御反应(例如冻结)做出反应,也可以通过针对目标的行为(例如逃避)做出积极反应(href =“#bib36” rid =“ bib36” class =“ bibr popnode “> McNaughton和Corr,2004 ,href="#bib38" rid="bib38" class=" bibr popnode"> Mobbs等人,2007 ,href =”#bib39 “ rid =” bib39“ class =” bibr popnode“> Montoya等人,2015 )。然而,人们对选择何时冷冻和何时逃脱的神经机制了解得不够清楚(href="#bib31" rid="bib31" class=" bibr popnode"> LeDoux等人,2017 )。因此,我们开发了跨物种范式,扩展了对不可避免的威胁的响应的最新研究(href="#bib13" rid="bib13" class=" bibr popnode"> Fadok et al。,2017 ,< a href =“#bib29” rid =“ bib29” class =“ bibr popnode”> Klumpers等人,2015 ),以了解行为可能导致成功逃脱的情况。结果测量包括行为逃逸性能和冻结,听觉惊吓反射,功能磁共振成像和离体细胞记录。通过比较具有和不具有功能性BLA的两个物种,我们确定了BLA对被动防御行为的重要抑制控制功能。对BLA的这种抑制控制进行了适应性调整,即选择性地存在于要求快速逃脱的迫在眉睫的威胁中,而不存在于遥远或不可避免的威胁条件下。人类的神经影像学证据表明,为了执行这种抑制性控制功能,BLA对CeA起作用以影响下游脑干及其被动防御行为的启动。在啮齿动物中,我们发现通过暴露于迫在眉睫的逃避威胁而进行的训练选择性地上调了CeL中一组神经元对BLA投射的BLA投射,这些神经元通过对催产素的敏感性可以确定。通过增加CeA中的催产素信号传导(href="#bib26" rid="bib26" class=" bibr popnode"> Huber等人,2005 ,href =“#bib30” rid = “ bib30” class =“ bibr popnode”> Knobloch等,2012 ,href="#bib55" rid="bib55" class=" bibr popnode"> Viviani等,2011 ),我们挽救了BLA功能下调期间对即将发生的可逃避威胁的响应。总之,这些跨物种发现不仅揭示了CeA的BLA在即将发生的可逃避威胁的条件下动态调整的调控,而且还表明了BLA如何通过激活CeL到CeM的抑制性预测机制来建立这种调控。最后,BLA在逃避行为中的关键作用在人类和啮齿动物中都是进化保守的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号