class='head no_bottom_margin' id='sec1title'>Int'/> Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy
【2h】

Perturbed Redox Signaling Exacerbates a Mitochondrial Myopathy

机译:干扰的氧化还原信号加剧了线粒体肌病

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionOxidative phosphorylation (OXPHOS) is the process by which mitochondria convert the energy derived from nutrients into ATP. Electrons generated by intermediary metabolism in the form of reducing equivalents are transferred along the four complexes of the mitochondrial respiratory chain (complexes I–IV, cI–cIV) to eventually combine with molecular oxygen to produce water. This exergonic process, termed respiration, sustains the extrusion of protons across the inner mitochondrial membrane, carried out by proton pumps present in cI, cIII, and cIV. Proton translocation generates an electrochemical gradient, giving rise to a membrane potential, Δψ, which is exploited by the ATP synthase (complex V, cV) to convert ADP and Pi to ATP. Mutations in a vast array of genes encoded by either the nuclear or mitochondrial DNA (mtDNA) disrupt the respiratory chain and lead to primary mitochondrial diseases. Several interconnected mechanisms account for the cellular consequences of OXPHOS defects, including decreased ATP synthesis, increased production of reactive oxygen species (ROS), altered ion trafficking, deranged metabolite levels, and abnormalities in mitochondrial-related cell death and turnover pathways such as apoptosis and autophagy.In particular, ROS are by-products of normal respiration, but can increase dramatically when the respiratory chain is impaired. ROS are in fact thought to play a “hormetic” double role: in physiological conditions, low levels of ROS act as signaling molecules regulating homeostatic pathways related to mitochondrial bioenergetics, whereas at high levels they act as toxic agents damaging cellular components, including nucleic acids, proteins, and lipids (). Along the respiratory chain, ROS are generated at different sites with cI, cII, and cIII playing the main role (). In particular, cI generates ROS through reverse electron transfer (RET), which exploits the electrons flowing back from coenzyme Q (CoQ) when this is over-reduced by electrons from cII () or in the presence of drugs or genetic defects that inhibit cIII and/or cIV (). Although the detrimental role of ROS has recently been challenged (), cells have evolved highly efficient ROS scavenging systems, which in mammals are mainly controlled by an antioxidant response program, based on the Kelch-like ECH-associated protein 1 (KEAP1) and nuclear factor erythroid 2-related factor 2 (NRF2/NFE2L2) ().In spite of recent progress, no specific therapy is currently available for OXPHOS disorders. Because of their huge genetic heterogeneity, an effective therapy should have the widest possible applicability or at least have the potential to be applied to more than a single disease entity.Alternative oxidases (AOXs) are cyanide-resistant, membrane-bound mitochondrial enzymes present in plants, lower eukaryotes, and some specific metazoan phyla, consisting of just a single gene product. AOXs maintain electron flow when the respiratory chain is inhibited at the level of cIII and/or cIV, by directly transferring electrons from CoQ to O2, thus bypassing cIII and cIV and preventing over-reduction of the CoQ pool. Notably, AOX activity is not associated with proton pumping across the inner mitochondrial membrane and thus does not contribute directly to the maintenance of Δψ and ATP synthesis. However, in the presence of cIII or cIV defects, the increase in proton pumping at cI, due to the re-activation of electron flow, should sustain the electrochemical gradient and ATP production. Importantly, the re-activation of electron flow by AOXs limits the excessive generation of ROS and maintains redox homeostasis, thereby maintaining tricarboxylic acid cycle activity (). This has been exploited extensively to improve the phenotype of cellular and fly models with cIII and cIV defects (). However, its use in mammalian models has not been explored so far. Here, we report the in vivo effects of AOX expressed in a skeletal muscle-specific knockout mouse for Cox15 (Cox15sm/sm, hereafter designated KO), encoding the terminal enzyme of the biosynthetic pathway of heme a, an essential prosthetic group of cIV (cytochrome c oxidase [COX]).
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介氧化性磷酸化(OXPHOS)是线粒体将营养物质中的能量转化为能量的过程ATP。中间代谢产生的电子以还原当量的形式沿线粒体呼吸链的四个复合物(复合物I–IV,cI–cIV)转移,最终与分子氧结合生成水。这种被称为呼吸的运动过程,通过存在于cI,cIII和cIV中的质子泵,使质子穿过线粒体内膜得以维持。质子易位产生电化学梯度,产生膜电位Δψ,ATP合成酶(复合物V,cV)利用该膜电位将ADP和Pi转化为ATP。由核或线粒体DNA(mtDNA)编码的大量基因中的突变破坏了呼吸链并导致了原发性线粒体疾病。几种相互关联的机制解释了OXPHOS缺陷的细胞后果,包括ATP合成减少,活性氧(ROS)产生增加,离子运输改变,代谢产物水平紊乱以及线粒体相关细胞死亡和代谢途径异常,例如凋亡和凋亡。 ROS是正常呼吸的副产物,但当呼吸链受损时会急剧增加。实际上,ROS被认为具有“双重作用”:在生理条件下,低水平的ROS充当调节与线粒体生物能相关的稳态途径的信号分子,而高水平的ROS则充当破坏细胞成分(包括核酸)的有毒物质,蛋白质和脂质()。沿呼吸链,ROS在cI,cII和cIII发挥主要作用的不同部位产生()。特别地,cI通过反向电子转移(RET)产生ROS,当来自cII()的电子过度还原辅酶Q(CoQ)或存在抑制cIII的药物或遗传缺陷时,它利用从辅酶Q(CoQ)回流的电子。和/或cIV()。尽管最近已经挑战了ROS的有害作用(),但细胞已经进化出高效的ROS清除系统,该系统在哺乳动物中主要由抗氧化剂响应程序控制,基于像Kelch一样的ECH相关蛋白1(KEAP1)和核红细胞因子2相关因子2(NRF2 / NFE2L2)()。尽管最近取得了进展,但目前尚无针对OXPHOS疾病的特异性疗法。由于其巨大的遗传异质性,有效的治疗方法应具有尽可能广泛的适用性,或至少有潜力应用于多个疾病个体。替代氧化酶(AOX)是耐氰化物的膜结合线粒体酶植物,低等真核生物和一些特定的后生门,仅由单一基因产物组成。通过将电子直接从CoQ转移到O2,从而绕过cIII和cIV并防止CoQ库的过度还原,当呼吸链在cIII和/或cIV水平受到抑制时,AOX维持电子流动。值得注意的是,AOX活性与跨内线粒体膜的质子泵送无关,因此不会直接有助于维持Δψ和ATP的合成。但是,在存在cIII或cIV缺陷的情况下,由于电子流的重新激活,在cI处质子泵浦的增加将维持电化学梯度和ATP的产生。重要的是,通过AOXs重新激活电子流可限制ROS的过量生成并保持氧化还原稳态,从而保持三羧酸循环活性()。它已被广泛用于改善具有cIII和cIV缺陷的细胞和果蝇模型的表型()。但是,迄今为止尚未探索其在哺乳动物模型中的用途。在这里,我们报道了在骨骼肌特异性敲除小鼠Cox15(Cox15 sm / sm ,以下称为KO)中表达的AOX的体内作用,该基因编码血红素a的生物合成途径的末端酶。 ,是cIV(细胞色素c氧化酶[COX])的重要义肢组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号