class='head no_bottom_margin' id='sec1title'>Int'/> Rapid Disruption of Dishevelled Activity Uncovers an Intercellular Role in Maintenance of Prickle in Core Planar Polarity Protein Complexes
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Rapid Disruption of Dishevelled Activity Uncovers an Intercellular Role in Maintenance of Prickle in Core Planar Polarity Protein Complexes
【2h】

Rapid Disruption of Dishevelled Activity Uncovers an Intercellular Role in Maintenance of Prickle in Core Planar Polarity Protein Complexes

机译:混乱活动的快速破坏揭示了维持核心平面极性蛋白复合物中的皮疹的细胞间作用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionPlanar polarity is the coordination of cell polarity within the plane of a tissue (, ). It is most obviously manifested by the orientation of trichomes and bristles in Drosophila or hair structures in the inner ear and skin of vertebrates (, ). Importantly, disruptions in planar polarity have been linked to congenital birth defects and cancer ().At the molecular level, planar polarity is defined as the asymmetric subcellular distribution of planar polarity proteins. During Drosophila wing development, the six proteins of the “core” planar polarity pathway (“core proteins” hereafter) self-organize along the proximodistal axis into stable asymmetric intercellular complexes (A) of variable stoichiometry (). The transmembrane protein Frizzled (Fz) and the cytoplasmic proteins Dishevelled (Dsh) and Diego (Dgo) co-localize at distal junctions, while the fourpass transmembrane protein Strabismus (Stbm; also known as Van Gogh [Vang]) and the LIM-domain protein Prickle (Pk) co-localize proximally. The atypical cadherin Flamingo (Fmi; also known as Starry Night [Stan]) localizes both proximally and distally, bridging the two halves of the complex (reviewed in ). For intercellular complexes to form and distribute to opposite cell ends, activity of all six core proteins is required to enable feedback interactions that are thought to amplify cellular asymmetry (, ).In Vivo Disruption of Dishevelled in the Drosophila Pupal Wing(A) Graphical representation of cells of the wing epithelium depicting the asymmetric distribution of the “core” planar polarity proteins.(B) Schematic representation of DshTEV disruption by heat shock-induced TEVp-induced cleavage at introduced TEVp cleavage sites.(C and D) Twenty-eight hours APF wing epithelium heterozygous for dshTEV and hs-TEVp transgenes in a dshV26-null background. (C) In the absence of heat-shock, no hs-TEVp is expressed, and the dshTEV transgene rescues the dsh-null phenotype, shown by the asymmetric localization of DshTEV (green, C′) and endogenous Fmi (red, C″). (D) After expression of TEVp by a 2 hr heat shock at 38°C, DshTEV localization is absent from the cell membrane (D′), but Fmi localization is maintained (D″). Scale bar, 5 μm.(E) Dsh-EGFP disruption on the basis of targeting with anti-GFP nanobodies fused to the Tom70 mitochondrial translocation signal. Upon Tom70-HA-vhhGFP production via heat shock, Dsh-EGFP is displaced from cell junctions.(F and G) Twenty-eight hr APF wing epithelium heterozygous for dsh-EGFP and hs-Tom70-HA-vhhGFP in a dshV26-null background. (F) In the absence of heat shock, Dsh-EGFP (green, F′) and Fmi (red, F″) are asymmetrically localized, and there is no detection of Tom70-HA-vhhGFP by immunolabelling (blue, F‴). (G) After expression of Tom70-HA-vhhGFP by a 2 hr heat shock at 38°C, Dsh-EGFP disappears from the cell membrane and is seen in punctate cytoplasmic spots (yellow arrows, G′), while asymmetric Fmi labeling is maintained at the cell membrane (G″). Tom70-HA-vhhGFP signal (blue) is strongly detected by immunolabelling and is restricted to the cytoplasmic region of the cells (G‴).Insets in (D′), (F‴) and (G′) are increased intensity regions. See also .
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介平面极性是组织(,)平面内细胞极性的协调。最明显的表现是果蝇中的毛状体和刚毛的取向或脊椎动物的内耳和皮肤中的毛发结构。重要的是,平面极性的破坏与先天性先天缺陷和癌症有关。在分子水平上,平面极性定义为平面极性蛋白的不对称亚细胞分布。在果蝇的翅膀发育过程中,“核心”平面极性途径的六个蛋白质(以下称“核心蛋白质”)沿着近现代轴自组织成可变化学计量的稳定的不对称细胞间复合物(A)。跨膜蛋白Frizzled(Fz)和胞浆蛋白Disheveled(Dsh)和Diego(Dgo)共定位在远端连接处,而四通膜蛋白Strabismus(Stbm;也称为Van Gogh [Vang])和LIM结构域蛋白质皮克(Pk)在近端共定位。非典型钙粘蛋白火烈鸟(Fmi;也称为Starry Night [Stan])位于近端和远端,将复合物的两半桥接在一起。为了使细胞间复合物形成并分布到相对的细胞末端,需要所有六个核心蛋白的活性才能实现反馈相互作用,这种相互作用被认为会放大细胞的不对称性(``)。<!-fig ft0-> <!-fig模式=条款f1-> <!-标题a7->果蝇Pu翼中混乱的活体扰动(A)机翼上皮细胞的图形表示,描绘了“核心”平面的不对称分布(B)在导入的TEVp裂解位点受热激诱导的TEVp诱导的裂解破坏Dsh TEV 的示意图。(C和D)28小时APF翼上皮杂合dsh <在dsh V26 -null背景下的sup> TEV 和hs-TEVp转基因。 (C)在没有热休克的情况下,没有hs-TEVp表达,并且dsh TEV 转基因拯救了dsh-null表型,表现为Dsh TEV的不对称定位(绿色,C')和内源性Fmi(红色,C'')。 (D)在38°C通过2小时热激表达TEVp后,细胞膜上没有Dsh TEV 定位(D'),但Fmi定位得以维持(D'')。比例尺,5μm。(E)Dsh-EGFP破坏是基于与Tom70线粒体易位信号融合的抗GFP纳米抗体的靶向作用。通过热激产生Tom70-HA-vhhGFP后,Dsh-EGFP从细胞连接处移出。(F和G)dsh-sGFP中的dsh-EGFP和hs-Tom70-HA-vhhGFP的28小时APF翼上皮杂合> V26 -空背景。 (F)在没有热激的情况下,Dsh-EGFP(绿色,F′)和Fmi(红色,F″)不对称地定位,并且没有通过免疫标记法检测到Tom70-HA-vhhGFP(蓝色,F 1)。 。 (G)在38°C通过2小时的热激表达Tom70-HA-vhhGFP后,Dsh-EGFP从细胞膜上消失并出现在点状细胞质斑点中(黄色箭头,G'),而不对称的Fmi标记是维持在细胞膜(G”)。 Tom70-HA-vhhGFP信号(蓝色)通过免疫标记法强烈检测到,并局限于细胞(G‴)的胞质区域。(D'),(F‴)和(G')中的插图是强度增加的区域。也可以看看 。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号