首页> 美国卫生研究院文献>Elsevier Sponsored Documents >YAP Activity Is Necessary and Sufficient for Basal Progenitor Abundance and Proliferation in the Developing Neocortex
【2h】

YAP Activity Is Necessary and Sufficient for Basal Progenitor Abundance and Proliferation in the Developing Neocortex

机译:对于正在发育的新皮层基础祖细胞的丰富和增殖YAP活动是必要和充分的

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe neocortex, the seat of higher cognitive functions, undergoes substantial expansion during the evolution of certain mammalian brains such as human. A major factor in neocortical expansion, notably regarding the increase in the number of cortical neurons, is thought to be an increased proliferative capacity of cortical neural progenitor cells (cNPCs) (, , , , , , ).Two principal classes of cNPCs exist in the developing neocortex, referred to as apical progenitors (APs) and basal progenitors (BPs) (, , ). The defining feature of APs is that they undergo mitosis at the ventricular (apical) surface of the ventricular zone (VZ), the primary germinal zone where the AP cell bodies reside (, ). At the onset of neurogenesis, apical (or ventricular) radial glia (aRG) are the major AP cell type (, , , href="#bib39" rid="bib39" class=" bibr popnode">Namba and Huttner, 2017). The defining feature of BPs is that they undergo mitosis away from the apical surface, typically in a secondary germinal zone called the subventricular zone (SVZ) where the BP cell bodies reside (href="#bib21" rid="bib21" class=" bibr popnode">Haubensak et al., 2004, href="#bib36" rid="bib36" class=" bibr popnode">Miyata et al., 2004, href="#bib42" rid="bib42" class=" bibr popnode">Noctor et al., 2004). BPs originate from APs, delaminate from the apical surface, migrate beyond the VZ, and thus form the SVZ. There are two main types of BPs, basal intermediate progenitors (bIPs) and basal (or outer) radial glia (bRG). In contrast to aRG, which are epithelial cells exhibiting apical-basal polarity with contact to the ventricle and (in the canonical form) to the basal lamina, bIPs are non-epithelial cells that no longer exhibit apical-basal polarity and have lost contact with both the ventricle and the basal lamina (href="#bib21" rid="bib21" class=" bibr popnode">Haubensak et al., 2004, href="#bib36" rid="bib36" class=" bibr popnode">Miyata et al., 2004, href="#bib42" rid="bib42" class=" bibr popnode">Noctor et al., 2004). bRG, however, though lacking an apical process that reaches the ventricle, retain epithelial features in that they (in the canonical form) possess a basal process that contacts the basal lamina (href="#bib64" rid="bib64" class=" bibr popnode">Betizeau et al., 2013, href="#bib14" rid="bib14" class=" bibr popnode">Fietz et al., 2010, href="#bib19" rid="bib19" class=" bibr popnode">Hansen et al., 2010, href="#bib45" rid="bib45" class=" bibr popnode">Reillo et al., 2011).BP composition and proliferative capacity may differ greatly between a developing lissencephalic neocortex (e.g., mouse) and a developing gyrencephalic neocortex (e.g., ferret and human). In the developing mouse neocortex, BPs mostly comprise bIPs that typically undergo neurogenic consumptive divisions giving rise to two neurons; compared to the aRG they derive from, these neurogenic bIPs characteristically upregulate the transcription factor Tbr2 and downregulate the transcription factor Sox2 (href="#bib21" rid="bib21" class=" bibr popnode">Haubensak et al., 2004, href="#bib36" rid="bib36" class=" bibr popnode">Miyata et al., 2004, href="#bib42" rid="bib42" class=" bibr popnode">Noctor et al., 2004). Only a minor portion of mouse BPs are bRG, and their proliferative potential is limited (href="#bib50" rid="bib50" class=" bibr popnode">Shitamukai et al., 2011, href="#bib55" rid="bib55" class=" bibr popnode">Wang et al., 2011). In contrast, in the developing ferret and human neocortex, the majority of BPs are proliferative bRG (highly proliferative in human) that do not express Tbr2 but rather maintain expression of Sox2 (href="#bib14" rid="bib14" class=" bibr popnode">Fietz et al., 2010, href="#bib19" rid="bib19" class=" bibr popnode">Hansen et al., 2010, href="#bib45" rid="bib45" class=" bibr popnode">Reillo et al., 2011). Moreover, as first shown in a seminal contribution for the developing monkey neocortex (href="#bib51" rid="bib51" class=" bibr popnode">Smart et al., 2002), the SVZ in a gyrencephalic neocortex is characteristically split into two morphologically distinct zones, an inner SVZ (iSVZ) and an outer SVZ (oSVZ). Of note, the evolutionary expansion of the neocortex has been linked to an increase in the proliferative capacity and abundance of BPs in the oSVZ, especially of bRG (href="#bib9" rid="bib9" class=" bibr popnode">Dehay et al., 2015, href="#bib13" rid="bib13" class=" bibr popnode">Fietz and Huttner, 2011, href="#bib33" rid="bib33" class=" bibr popnode">Lui et al., 2011, href="#bib39" rid="bib39" class=" bibr popnode">Namba and Huttner, 2017). However, the molecular players that differentially promote the proliferative capacity of BPs across the various mammalian species remain largely unknown.To gain insight into this issue, we examined a major molecular mechanism known to regulate organ size, the Hippo-YAP signaling pathway (href="#bib2" rid="bib2" class=" bibr popnode">Barry and Camargo, 2013, href="#bib5" rid="bib5" class=" bibr popnode">Camargo et al., 2007, href="#bib30" rid="bib30" class=" bibr popnode">Lian et al., 2010, href="#bib59" rid="bib59" class=" bibr popnode">Yu et al., 2015). The core of Hippo-YAP signaling is the YAP protein, whose ability to activate transcription is regulated by phosphorylation. Phosphorylated YAP (phospho-YAP) is largely retained in the cytoplasm, whereas dephosphorylated YAP (dephospho-YAP) can translocate to the nucleus and activate the expression of genes linked to cell proliferation (href="#bib60" rid="bib60" class=" bibr popnode">Zanconato et al., 2015, href="#bib61" rid="bib61" class=" bibr popnode">Zhao et al., 2007, href="#bib62" rid="bib62" class=" bibr popnode">Zhao et al., 2008, href="#bib63" rid="bib63" class=" bibr popnode">Zhao et al., 2010). Recent studies dissecting the roles of the cadherin family members Dchs1 and Fat4 (href="#bib6" rid="bib6" class=" bibr popnode">Cappello et al., 2013) and the tumor suppressor neurofibromatosis 2 (href="#bib28" rid="bib28" class=" bibr popnode">Lavado et al., 2013, href="#bib29" rid="bib29" class=" bibr popnode">Lavado et al., 2014) and investigating heterotopia formation (href="#bib46" rid="bib46" class=" bibr popnode">Saito et al., 2018) in mouse brain development have reported that YAP promotes the proliferation of mouse APs. These studies, however, have not focused on a potential role of YAP in regulating the proliferation of BPs, nor have they addressed whether differences in YAP activity may underlie the differences in the proliferative capacity of BPs across various mammalian species in the context of the evolutionary expansion of the neocortex.In the present study, we have identified differences in YAP expression and YAP activity between the developing lissencephalic mouse and gyrencephalic ferret and human neocortex that match the differences in the proliferative capacity of BPs across these species. Enhancing YAP activity in mouse BPs induced their proliferation and therefore shifted their fate from neurogenic to proliferative. In contrast, inhibition of endogenous YAP activity by verteporfin, administration of a dominant-negative YAP, or CRISPR-Cas9-mediated disruption of YAP expression reduced BP proliferation in developing ferret and human neocortex. Taken together, these findings suggest that an upregulation of YAP levels and presumably activity contributed to the increased proliferative capacity of BPs in the context of the evolutionary expansion of the neocortex.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介具有较高认知功能的新皮层在某些动物的进化过程中经历了实质性扩展哺乳动物的大脑,例如人类。新皮层扩张的主要因素,尤其是皮质神经元数量的增加,被认为是皮质神经祖细胞(cNPC)(,,,,,,,)增殖能力的增强。发育中的新皮层,称为顶祖细胞(APs)和基底祖细胞(BPs)(,,)。 AP的定义特征是它们在心室区(VZ)的心室(根尖)表面经历有丝分裂,VZ是AP细胞体所在的主要生发区。在神经发生开始时,顶端(或心室)radial神经胶质细胞(aRG)是主要的AP细胞类型(“,,href="#bib39" rid="bib39" class=" bibr popnode"> Namba和Huttner, 2017 )。 BP的定义特征是,它们会远离根尖表面进行有丝分裂,通常发生在称为BP的细胞体所在的称为脑室下区(SVZ)的第二生发区中(href =“#bib21” rid =“ bib21”类=“ bibr popnode”> Haubensak等,2004 ,href="#bib36" rid="bib36" class=" bibr popnode">宫田等,2004 ,href =“#bib42” rid =“ bib42” class =“ bibr popnode”> Noctor等人,2004 )。 BP起源于AP,从顶表面分层,迁移到VZ之外,从而形成SVZ。 BP有两种主要类型,基底中间祖细胞(bIP)和基底(或外部)radial神经胶质细胞(bRG)。与aRG不同,aRG是上皮细胞与心室接触并(以规范形式)与基底层呈顶基极极性,而bIPs是非上皮细胞,不再表现出顶基极极性并且失去与心室和基底层(href="#bib21" rid="bib21" class=" bibr popnode"> Haubensak et al。,2004 ,href =“#bib36” rid =“ bib36“ class =” bibr popnode“>宫田等人,2004 ,href="#bib42" rid="bib42" class=" bibr popnode"> Noctor等人,2004 )。然而,bRG虽然缺乏到达心室的顶端过程,但保留了上皮特征,因为它们(以规范形式)具有与基底层(href =“#bib64” rid =“ bib64”类)接触的基底过程=“ bibr popnode”> Betizeau等人,2013 ,href="#bib14" rid="bib14" class=" bibr popnode"> Fietz等人,2010 ,href =“#bib19” rid =“ bib19” class =“ bibr popnode”> Hansen等人,2010 ,href="#bib45" rid="bib45" class=" bibr popnode"> Reillo et al。,2011 )。发育中的小脑新皮层(例如小鼠)和发育中的小脑新皮层(例如雪貂和人)之间的BP组成和增殖能力可能有很大差异。在发育中的小鼠新皮层中,BP大多包含bIP,这些bIP通常会经历神经原性消耗分裂,从而产生两个神经元。与它们产生的aRG相比,这些神经源性bIP特有地上调转录因子Tbr2和下调转录因子Sox2(href="#bib21" rid="bib21" class=" bibr popnode"> Haubensak等人,2004年,href="#bib36" rid="bib36" class=" bibr popnode">宫田等人,2004 ,href =“#bib42” rid =“ bib42”类=“ bibr popnode”> Noctor等人,2004 )。小鼠BP仅有一小部分是bRG,并且其增殖潜力有限(href="#bib50" rid="bib50" class=" bibr popnode"> Shitamukai等,2011 ,href =“#bib55” rid =“ bib55” class =“ bibr popnode”> Wang等人,2011 )。相反,在发育中的雪貂和人类新皮层中,大多数BP是不表达Tbr2而是维持Sox2表达的增生性bRG(人类中高度增生)(href =“#bib14” rid =“ bib14”类=“ bibr popnode”> Fietz等,2010 ,href="#bib19" rid="bib19" class=" bibr popnode"> Hansen等,2010 ,href =“#bib45” rid =“ bib45” class =“ bibr popnode”> Reillo等人,2011 )。此外,如对发育中的猴子新皮层的重要贡献(href="#bib51" rid="bib51" class=" bibr popnode"> Smart et al。,2002 )首次所示,SVZ在颅脑新皮层特征性地分为两个形态上不同的区域,即内部SVZ(iSVZ)和外部SVZ(oSVZ)。值得注意的是,新皮层的进化扩展与oSVZ中BP的增殖能力和丰度的增加有关,尤其是bRG(href =“#bib9” rid =“ bib9” class =“ bibr popnode” > Dehay等人,2015 ,href="#bib13" rid="bib13" class=" bibr popnode"> Fietz和Huttner,2011年,href="#bib33" rid="bib33" class=" bibr popnode"> Lui等人,2011 ,href =“#bib39” rid =“ bib39” class =“ bibr popnode “> Namba和Huttner,2017 )。然而,在多种哺乳动物中差异促进BPs增殖能力的分子机制仍然未知。为了深入了解这一问题,我们研究了一种已知的调节器官大小的主要分子机制,即Hippo-YAP信号通路(href =“#bib2” rid =“ bib2” class =“ bibr popnode”> Barry和Camargo,2013 ,href="#bib5" rid="bib5" class=" bibr popnode"> Camargo等等人,2007 ,href="#bib30" rid="bib30" class=" bibr popnode"> Lian等人,2010 ,href =“#bib59” rid = “ bib59” class =“ bibr popnode”> Yu等人,2015 )。 Hippo-YAP信号转导的核心是YAP蛋白,其激活转录的能力受磷酸化作用的调节。磷酸化的YAP(phospho-YAP)大部分保留在细胞质中,而去磷酸化的YAP(dephospho-YAP)可以转运到细胞核并激活与细胞增殖有关的基因的表达(href =“#bib60” rid =“ bib60 “ class =” bibr popnode“> Zanconato等,2015 ,href="#bib61" rid="bib61" class=" bibr popnode">赵等,2007 , href="#bib62" rid="bib62" class=" bibr popnode">赵等人,2008 ,href =“#bib63” rid =“ bib63” class =“ bibr popnode” > Zhao等人,2010 )。最近的研究剖析了钙黏着蛋白家族成员Dchs1和Fat4(href="#bib6" rid="bib6" class=" bibr popnode"> Cappello et al。,2013 )和肿瘤抑制神经纤维瘤病的作用。 2(href="#bib28" rid="bib28" class=" bibr popnode"> Lavado等人,2013 ,href =“#bib29” rid =“ bib29” class =“ bibr popnode“> Lavado等人,2014 )并研究异位症的形成(href="#bib46" rid="bib46" class=" bibr popnode"> Saito等人,2018 )小鼠大脑发育的研究报道了YAP促进了小鼠AP的增殖。然而,这些研究并未集中于YAP在调节BP增殖中的潜在作用,也未解决YAP活性差异是否可能是进化背景下不同哺乳动物物种BP增殖能力差异的基础。在本研究中,我们确定了发育中的小脑小鼠和回脑雪貂与人类新皮层之间的YAP表达和YAP活性的差异,这些差异与这些物种的BP增殖能力的差异相匹配。增强小鼠BP中的YAP活性可诱导其增殖,因此将其命运从神经源转移到增生。相反,Verteporfin抑制内源性YAP活性,施用显性负性YAP或CRISPR-Cas9介导的YAP表达破坏会降低发育中的雪貂和人类新皮层的BP增殖。综上所述,这些发现表明,在新皮层的进化扩张的背景下,YAP水平的上调和推测的活性有助于BP的增殖能力增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号