class='head no_bottom_margin' id='sec1title'>Res'/> Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks
首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks
【2h】

Mycorrhizal Fungi Respond to Resource Inequality by Moving Phosphorus from Rich to Poor Patches across Networks

机译:菌根真菌通过将磷从丰富的斑点转移到不良的斑点来响应资源不平等

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">Results and DiscussionMutualistic partnerships are ubiquitous [] and allow species to colonize diverse environments that fluctuate dramatically in resource availability, from our mammalian guts [] to deep-sea trenches []. Although mutualistic trade can help individuals, the relative benefits to each partner will shift according to how resources are distributed [, ]. As resources become increasingly patchy in time or space, returns can become more variable, and thus less reliable [, , ]. Consequently, individuals may be favored to hoard resources—be it for consumption, to retain a competitive edge, or for trading later [, , ]. This can lead to a decrease in current trade. Alternatively, individuals may be able to exploit local resource variation to dictate favorable terms of trade [, ]. These higher returns would lead them to invest more heavily in trade. However, because of our inability to precisely track how resources are moved between different species, it has not been possible to test these hypotheses about how exposure to resource inequality influences trading strategies in mutualisms.We developed a quantum-dot nutrient-tracking technique that allowed us to track the trade of fluorescently labeled phosphorus in arguably the world’s most widespread trade partnership: the mutualism between arbuscular mycorrhizal fungi and land plants []. Arbuscular mycorrhizal fungi form underground networks of filamentous hyphae in the soil []. The fungus mobilizes and collects phosphorus from the soil and trades this commodity with its host plants for carbon in a market-like exchange [href="#bib6" rid="bib6" class=" bibr popnode">6, href="#bib8" rid="bib8" class=" bibr popnode">8, href="#bib17" rid="bib17" class=" bibr popnode">17, href="#bib18" rid="bib18" class=" bibr popnode">18, href="#bib19" rid="bib19" class=" bibr popnode">19, href="#bib20" rid="bib20" class=" bibr popnode">20]. By tagging phosphorus with highly fluorescent nanoparticles of different colors, we could follow the movement of resources from their points of origin, across a fungus, and into the host root.Our aim was to examine how the trading strategy of a fungus responds to varying levels of resource inequality. We manipulated resource distributions across a fungus, simultaneously exposing it to rich and poor patches of tagged phosphorus across its network (href="/pmc/articles/PMC6584331/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1). We then asked whether the fungus responds to higher resource inequality by increasing trade with the host plant, or by hoarding resources and trading less. Because our phosphorus was fluorescently labeled according to whether it came from a resource-rich or -poor patch (href="#mmc1" rid="mmc1" class=" supplementary-material">Figure S1), we could determine where these phosphorus resources were hoarded, relocated, or transferred to the host.href="/pmc/articles/PMC6584331/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6584331_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6584331/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6584331/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Experimental Design(A) Illustration of the experimental setup in which quantum-dot-tagged phosphorus was added to two nutrient compartments, keeping the absolute amount consistent but varying the ratios to create high (90:10), medium (70:30), and no resource inequality (50:50) across the fungus. Roots were confined to the root compartment, but the fungus was able to cross the plastic lip and enter fungus-only nutrient compartments. A plastic barrier prevented any non-fungal movement of injected nutrients.(B) Mock-up of inequality replicate with resource patches of cyan and red quantum-dot-tagged phosphorus and fungal network.(C) A close-up of a single fungal hypha with quantum-dot-tagged phosphorus in its network. See bar for scale.See also href="#mmc1" rid="mmc1" class=" supplementary-material">Figures S1 and href="#mmc1" rid="mmc1" class=" supplementary-material">S2.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>结果与讨论相互之间的伙伴关系无处不在[],并允许物种在急剧波动的不同环境中定居。资源的可用性,从我们的哺乳动物胆量[]到深海trench []。尽管互惠贸易可以帮助个人,但每个合伙人的相对利益将根据资源分配的方式而变化[,]。随着资源在时间或空间上变得越来越零散,回报可能变得更加可变,因此可靠性降低。因此,个人可能会to积资源-无论是为了消费,保持竞争优势还是为了以后交易。这可能导致当前交易减少。另外,个人可能能够利用当地资源的变化来决定有利的贸易条件[,]。这些更高的回报将导致他们加大对贸易的投资。但是,由于我们无法精确追踪资源在不同物种之间的移动方式,因此无法检验这些关于资源不平等的暴露如何影响共生主义交易策略的假设。我们开发了一种量子点营养追踪技术我们可以追踪可以说是世界上最广泛的贸易伙伴关系中的荧光标记磷的贸易:丛枝菌根真菌与陆地植物之间的相互作用。丛枝菌根真菌在土壤中形成地下丝状菌丝的网络[]。真菌从土壤中动员并收集磷,并将其与寄主植物进行碳交易,通过类似市场的交易方式进行交易[href="#bib6" rid="bib6" class=" bibr popnode"> 6 ,href="#bib8" rid="bib8" class=" bibr popnode"> 8 ,href="#bib17" rid="bib17" class=" bibr popnode"> 17 < / a>,href="#bib18" rid="bib18" class=" bibr popnode"> 18 ,href="#bib19" rid="bib19" class=" bibr popnode"> 19 ,href="#bib20" rid="bib20" class=" bibr popnode"> 20 ]。通过用不同颜色的高荧光纳米粒子标记磷,我们可以跟踪资源从其起源点到真菌的整个运动过程,直至进入根部,我们的目的是研究真菌的交易策略如何响应不同水平资源不平等。我们操纵了真菌上的资源分布,同时将其暴露于整个网络中的富磷和贫磷标签磷中(href =“ / pmc / articles / PMC6584331 / figure / fig1 /” target =“ figure” class =“ fig- table-link figpopup“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“ co-legend-rid =” lgnd_fig1“>图1 )。然后,我们询问真菌是通过增加与寄主植物的贸易,还是通过resources积资源并减少贸易来应对更高的资源不平等。因为我们的磷是根据是否来自资源丰富或贫乏的补丁进行荧光标记的(href="#mmc1" rid="mmc1" class="Supplementary-material">图S1 ),我们可以确定这些磷资源的存放,重新安置或转移到何处。<!-fig ft0-> <!-fig mode = art f1-> href =“ / pmc / articles / PMC6584331 / figure / fig1 /“ target =” figure“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“> <!-fig / graphic | fig / fig / alternatives / graphic mode =” anchored“ m1-> class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6584331_gr1.jpg" target="tileshopwindow"> target="object" href="/pmc/articles/PMC6584331/figure/fig1/?report=objectonly">在单独的窗口中打开 class =“ figpopup “ href =” / pmc / articles / PMC6584331 / figure / fig1 /“ target =” figure“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“>图1 <!-caption a7 ->实验设计(一)实验说明一种将量子点标记的磷添加到两个营养区室中的设置,使绝对量保持一致,但改变比例以产生高(90:10),中等(70:30)和无资源不平等(50:50) )穿过真菌。根被限制在根室中,但是真菌能够穿过塑料唇并进入仅真菌的营养室。塑料屏障可防止注入的营养物质发生任何非真菌运动。(B)不等式的模型复制具有青色和红色量子点标记的磷和真菌网络的资源斑块。(C)单个真菌的特写菌丝在其网络中带有量子点标记的磷。请参见比例尺。另请参见href="#mmc1" rid="mmc1" class="Supplementary-material">图S1 和href =“#mmc1” rid =“ mmc1” class = “补充材料“> S2 。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号