首页> 外文学位 >Impact of arbuscular mycorrhizal fungi on the physiology of maize genotypes under variable nitrogen and phosphorus levels.
【24h】

Impact of arbuscular mycorrhizal fungi on the physiology of maize genotypes under variable nitrogen and phosphorus levels.

机译:在可变氮磷水平下丛枝菌根真菌对玉米基因型生理的影响。

获取原文
获取原文并翻译 | 示例

摘要

Increasing crop production to ensure future food security while reducing environmental pressure on agro-ecosystems requires improved water and nutrient use efficiency. The soil microbial community directly and/or indirectly has important consequences on food security since soil microbes participate in several soil processes. Thus, it is important to increase our understanding of AM fungal and maize genotype interactions, the impact of N and P fertilization and water condition on the symbiosis, and on the physiology and nutritional status of maize plants. In two greenhouse experiments AM inoculated plants exhibited root colonization values around 70% which was confirmed by the presence of the AM lipid biomarker (C16:1cis11). Nitrogen fertilization increased AM root colonization, but only compared to unfertilized plants. Root colonization and biomarker concentration in root and soil were similar among inoculated maize genotypes across conventional and drought tolerant hybrids. Mycorrhizal inoculation had a positive impact on maize plant P uptake, but neither increased N uptake nor chlorophyll content in leaves. Nitrogen fertilization increased P concentration in plant tissue under AM inoculation, but decreased P concentration under non-inoculated conditions. There were positive plant biomass and chlorophyll responses as N fertilization increased, but not for P fertilization. Except for increased P uptake, results from both greenhouse studies are inconclusive about why most of the parameters evaluated were unresponsive or negatively affected by AM inoculation. In a field experiment, indigenous AM fungi effectively colonized maize roots to the same magnitude regardless of maize genotype and soil water condition. Increased soil extramatrical AM biomass, suggesting greater C allocation from plant to AM fungus, was observed under water-limited conditions and also among maize genotypes. In addition, while water limitation caused a shift in the overall soil microbial community, maize hybrids influenced specific microbial groups. Bacterial and actinomycete markers, and also total microbial biomass significantly increased under water stress. Interactions among AM fungi, plants and nutrients appear to be complex making plant responses to AM fungi difficult to predict and explain. Further studies on the mechanisms involved are needed to gain further insight into the complex relationships among AM fungi, maize and soil fertility management to maximize benefit from the AM fungi/plant symbiosis.
机译:增加作物产量以确保未来的粮食安全,同时减轻对农业生态系统的环境压力,需要提高水和养分的利用效率。由于土壤微生物参与了几种土壤过程,因此土壤微生物群落直接和/或间接对粮食安全产生重要影响。因此,重要的是加深我们对AM真菌和玉米基因型相互作用,N和P施肥和水分状况对共生的影响以及对玉米植物的生理和营养状况的了解。在两个温室试验中,接种AM的植物显示出约70%的根定植值,这是通过AM脂质生物标记物(C16:1cis11)的存在来证实的。施氮增加了AM根定植,但仅与未施肥的植物相比。在常规和耐旱杂种的玉米基因型中,根和土壤中的根定植和生物标志物浓度相似。菌根接种对玉米植株的磷吸收有积极影响,但叶片氮素吸收和叶绿素含量均无增加。氮肥在AM接种下会增加植物组织中的P浓度,但在非接种条件下会降低P浓度。随着氮肥的增加,植物的生物量和叶绿素响应呈正向变化,但磷肥的响应却没有。除了增加的P吸收外,两个温室研究的结果还不确定为什么AM接种对大多数评估参数无响应或产生负面影响。在田间试验中,无论玉米基因型和土壤水分状况如何,本地AM真菌都能有效地将玉米根定植到相同的大小。在水分有限的条件下以及在玉米基因型之间,观察到土壤基质AM生物量的增加,表明从植物到AM真菌的碳分配更大。此外,水的限制导致整个土壤微生物群落发生变化,而玉米杂交种影响了特定的微生物群。在水分胁迫下,细菌和放线菌标记以及微生物总生物量显着增加。 AM真菌,植物和养分之间的相互作用似乎很复杂,使得植物对AM真菌的反应难以预测和解释。为了进一步了解AM真菌,玉米和土壤肥力管理之间的复杂关系,需要最大限度地从AM真菌/植物共生中受益,需要进一步研究所涉及的机制。

著录项

  • 作者

    Crespo, Roberto Javier.;

  • 作者单位

    The University of Nebraska - Lincoln.;

  • 授予单位 The University of Nebraska - Lincoln.;
  • 学科 Agriculture Agronomy.;Agriculture General.;Agriculture Soil Science.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号