首页> 美国卫生研究院文献>Elsevier Sponsored Documents >METTL1 Promotes let-7 MicroRNA Processing via m7G Methylation
【2h】

METTL1 Promotes let-7 MicroRNA Processing via m7G Methylation

机译:METTL1通过m7G甲基化促进let-7 MicroRNA处理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionPost-synthesis covalent modification of biological molecules is a key aspect of intracellular signaling, and it is critically important in many biological processes. RNA molecules, similar to proteins, are subject to a vast array of post-synthesis covalent modifications, which together constitute the epitranscriptome. To date, >100 RNA modifications have been identified, which are spread throughout every class of RNA and are evolutionarily conserved throughout all kingdoms of life (, ).RNA modifications have the potential to affect all RNA processes, including splicing, stability, and localization (). Many RNA modifications have been identified by mass spectrometry (MS), and complex epitranscriptomes of tRNA and rRNA have been thoroughly studied. However, this represents a mere snapshot of a much bigger picture, with the clear majority of modifications remaining uncharacterized. This is predominantly due to a lack of sensitive methodologies with which to detect the modifications at a high resolution. Even now, MS methodologies are largely unable to generate transcriptome-wide modification profiles. However, a few very recent analyses have used anti-modification antibodies (e.g., against N1-methyladenosine [], N6-methyladenosine [], and 5-hydroxymethylcytosine []) or chemical reactivity of the modification (for pseudouridine [, ], m5C [], and 2′-O-methylation []). Their results clearly suggest that many of the modifications identified on rRNA and tRNA are also present on other RNA classes. Therefore, the development of epitranscriptomic methodologies (e.g., new antibody and chemical methods coupled to next-generation sequencing [NGS]) represents a bottleneck in deciphering the function of new RNA modifications.Certain nucleotides, such as 7-methylguanosine (m7G), display specific modification-dependent chemistries that can be exploited to study their prevalence and transcript location. m7G is present in eukaryotic mRNA 5′ caps and at defined internal positions within tRNAs and rRNAs across all domains of life. The best-characterized enzyme mediating internal m7G methylation is the TRMT8 yeast enzyme homolog METTL1 (methyltransferase-like 1), which, together with its co-factor WDR4 (WD repeat domain 4), catalyzes m7G at G46 of specific tRNAs, such as tRNAPhe ().In contrast to deoxy-m7G, m7G in RNA is highly stable in neutral aqueous solution (). The methylation significantly alters the charge density of RNA, potentially serving as a molecular handle, but it does not impair Watson-Crick G:C base complementarity. It does, however, interfere with non-canonical base pairing (i.e., Hoogsteen pairs), possibly affecting the secondary structure of RNA. Although relatively abundant, m7G has proved very difficult to study so far. Being neutral to Watson-Crick base pairing, it does not interfere with reverse transcription, rendering it invisible to detection by standard sequencing-based technologies.microRNAs (miRNAs) are short single-stranded RNA molecules (18–24 nucleotides [nt]) that target the RNA interference silencing complex (RISC) to specific mRNAs. Their specificity is mediated by partial base pairing to sequences predominantly found in the 3′ UTR of mRNAs (). This interaction results in the decreased translation of the proteins they encode and/or in the degradation of the mRNAs themselves (, ). To date, >1,000 human miRNAs have been identified, and they are key regulators of numerous physiological and pathological processes.miRNA biosynthesis is complex and involves a multistep pathway that can be regulated at many levels (href="#bib6" rid="bib6" class=" bibr popnode">Bartel, 2018), including post-transcriptional modification of miRNA precursors (href="#bib1" rid="bib1" class=" bibr popnode">Alarcón et al., 2015, href="#bib63" rid="bib63" class=" bibr popnode">Xhemalce et al., 2012). miRNAs are synthesized from larger transcripts by RNA polymerase II or III. These primary miRNA transcripts (pri-miRNAs) are then cleaved by DROSHA to release hairpin-shaped RNAs called pre-miRNAs (href="#bib37" rid="bib37" class=" bibr popnode">Lee et al., 2003), and further cleaved by DICER to generate a miRNA duplex (href="#bib14" rid="bib14" class=" bibr popnode">Chendrimada et al., 2005). Certain miRNAs can form alternative secondary structures, such as G-quadruplexes, that can interfere with their processing (href="#bib48" rid="bib48" class=" bibr popnode">Mirihana Arachchilage et al., 2015, href="#bib50" rid="bib50" class=" bibr popnode">Pandey et al., 2015). However, little is known about the biological relevance of these structures in a physiological context.Here, we develop two different but complementary high-throughput sequencing strategies to identify miRNAs harboring internal m7G modification. We show that METTL1 methylates a specific subset of tumor suppressor miRNAs, including let-7, to promote their processing from primary transcript to precursor miRNA. Depletion of METTL1 causes gene expression and phenotypic changes in a miRNA-dependent manner. We show that m7G-modified miRNAs have a propensity to form G-quadruplexes. We identify guanosine 11 as the m7G methylated residue within let-7e-5p, and we show that methylation at this position affects G-quadruplex formation, thereby promoting processing of the precursor miRNA.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介生物分子的合成后共价修饰是细胞内信号传导的关键方面,它在许多生物学过程中至关重要。与蛋白质相似,RNA分子会经历大量的合成后共价修饰,它们共同构成了转录组。迄今为止,已经鉴定出超过100种RNA修饰,这些修饰遍布于所有类别的RNA中,并且在整个生命王国中都是进化保守的(RNA)修饰有可能影响所有RNA的过程,包括剪接,稳定性和定位性()。已经通过质谱(MS)鉴定了许多RNA修饰,并且已经对tRNA和rRNA的复杂的转录组进行了深入研究。但是,这仅是更大图片的快照,而大部分修改显然仍未表征。这主要是由于缺乏灵敏的方法来以高分辨率检测修饰的方法。即使到现在,MS方法在很大程度上仍无法生成转录组范围的修饰谱。但是,最近的一些分析使用了抗修饰抗体(例如,针对N1-甲基腺苷[],N6-甲基腺苷[]和5-羟甲基胞嘧啶[])或修饰的化学反应性(对于伪尿苷[,],m5C []和2'-O-甲基化[])。他们的结果清楚地表明,在rRNA和tRNA上鉴定出的许多修饰也存在于其他RNA类型上。因此,转录组方法学的发展(例如,与下一代测序[NGS]偶联的新抗体和化学方法)代表了解密新RNA修饰功能的瓶颈。某些核苷酸,例如7-甲基鸟苷(m7G),显示特定的依赖修饰的化学物质,可用于研究其流行程度和转录本位置。 m7G存在于真核mRNA 5'帽中,并且位于生命所有域的tRNA和rRNA的内部定义位置。表征内部m7G甲基化的最典型的酶是TRMT8酵母酶同源物METTL1(甲基转移酶样1),它与它的辅因子WDR4(WD重复结构域4)一起催化特定tRNA(例如tRNA)的G46处的m7G。 Phe ()。与脱氧m7G相比,RNA中的m7G在中性水溶液中是高度稳定的()。甲基化会显着改变RNA的电荷密度,可能会起到分子处理的作用,但不会损害Watson-Crick G:C碱基的互补性。但是,它确实会干扰非规范碱基配对(即Hoogsteen对),可能会影响RNA的二级结构。尽管相对丰富,但到目前为止,m7G已被证明很难研究。对Watson-Crick碱基配对是中性的,它不会干扰逆转录,因此无法被基于标准测序的技术检测到。microRNA(miRNA)是短的单链RNA分子(18-24个核苷酸[nt]),将RNA干扰沉默复合物(RISC)靶向特定的mRNA。它们的特异性是通过与主要在mRNA 3'UTR中发现的序列进行部分碱基配对而介导的()。这种相互作用导致它们编码的蛋白质翻译减少和/或mRNA本身的降解(,)。迄今为止,已经鉴定出超过1,000种人类miRNA,它们是众多生理和病理过程的关键调节剂。miRNA生物合成是复杂的,涉及多步途径,可以在许多水平上进行调节(href =“#bib6” rid = “ bib6” class =“ bibr popnode”> Bartel,2018 ),包括miRNA前体的转录后修饰(href="#bib1" rid="bib1" class=" bibr popnode">Alarcón等等人,2015 ,href="#bib63" rid="bib63" class=" bibr popnode"> Xhemalce等人,2012 )。 miRNA由较大的转录物通过RNA聚合酶II或III合成。然后,这些原始的miRNA转录本(pri-miRNA)被DROSHA切割,以释放称为pre-miRNA的发夹状RNA(href="#bib37" rid="bib37" class=" bibr popnode"> Lee et al。, 2003 ),并进一步被DICER切割以生成miRNA双链体(href="#bib14" rid="bib14" class=" bibr popnode"> Chendrimada等,2005 )。某些miRNA可以形成其他二级结构,例如G-四链体,从而干扰其加工(href="#bib48" rid="bib48" class=" bibr popnode"> Mirihana Arachchilage等,2015 ,href="#bib50" rid="bib50" class=" bibr popnode">潘迪等人,2015 )。然而,关于这些结构在生物学背景下的生物学相关性知之甚少。在此,我们开发了两种不同但互补的高通量测序策略,以鉴定具有内部m7G修饰的miRNA。我们显示METTL1甲基化的肿瘤抑制miRNA的特定子集,包括let-7,以促进其从初级转录物到前体miRNA的加工。 METTL1的耗竭以miRNA依赖性方式引起基因表达和表型改变。我们显示,m7G修饰的miRNA具有形成G-四链体的倾向。我们将鸟苷11鉴定为let-7e-5p中的m7G甲基化残基,并且我们表明该位置的甲基化会影响G-四链体的形成,从而促进前体miRNA的加工。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号