首页> 美国卫生研究院文献>Elsevier Sponsored Documents >Spiny and Non-spiny Parvalbumin-Positive Hippocampal Interneurons Show Different Plastic Properties
【2h】

Spiny and Non-spiny Parvalbumin-Positive Hippocampal Interneurons Show Different Plastic Properties

机译:多刺和非多刺的小白蛋白阳性海马interneurons显示不同的塑性。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionExperience-based changes of synaptic strength and neuronal connectivity form the basis of learning and memory (, , , ). Dendritic spines, which in principal cells (PCs) receive the vast majority of excitatory inputs, are thought to be critical sites of plasticity (, ). These dendritic protrusions minimize interference between excitatory inputs by electrical isolation and by compartmentalization of post-synaptic calcium transients and molecular signaling cascades, which in turn control the strength of synaptic transmission (). In cortical PCs, structural changes of dendritic spines, including the generation of new and elimination of existing spines, underlie long-term changes of synaptic strength, connectivity, and memory formation (, ). Parvalbumin-expressing GABAergic interneurons (PVIs) comprise mainly basket and axo-axonic cells. These neurons target the perisomatic region of postsynaptic cells and are critical regulators of PC activity (). Due to their rapid action potential firing, phase locked to neuronal network oscillations, and their ion channel and receptor expression profile, they have been suggested to form a rigid interconnected network geared toward rapid signaling and oscillatory entrainment of PC ensembles (, ). In line with this concept, PVIs have been reported to be largely devoid of dendritic spines (, ), but see and href="#bib36" rid="bib36" class=" bibr popnode">Sancho and Bloodgood (2018), a property which may aid in rapid signal propagation and fast input to output conversion (href="#bib18" rid="bib18" class=" bibr popnode">Hu et al., 2014). However, recent reports have shown behavior-dependent changes in protein expression in hippocampal PVIs (href="#bib5" rid="bib5" class=" bibr popnode">Donato et al., 2015), remodeling of their axonal branches (href="#bib34" rid="bib34" class=" bibr popnode">Pieraut et al., 2014) and functional plasticity at excitatory inputs targeting PVIs (href="#bib12" rid="bib12" class=" bibr popnode">Hainmueller et al., 2014), suggesting that these neurons participate in experience-induced network plasticity. Inspired by several studies on the mostly sparse occurrence of spines on different types of cortical interneurons (href="#bib9" rid="bib9" class=" bibr popnode">Guirado et al., 2014, href="#bib21" rid="bib21" class=" bibr popnode">Kawaguchi et al., 2006, href="#bib22" rid="bib22" class=" bibr popnode">Keck et al., 2011, href="#bib30" rid="bib30" class=" bibr popnode">McBain et al., 1994, href="#bib36" rid="bib36" class=" bibr popnode">Sancho and Bloodgood, 2018, href="#bib37" rid="bib37" class=" bibr popnode">Scheuss and Bonhoeffer, 2014), we assessed the existence and organization of dendritic spines in PVIs of the hippocampal formation in adult mice. We show that a fraction of PVIs in the dentate gyrus (DG) but not the cornu ammonis (CA) areas 1 and 3 carry high densities of dendritic spines. These spines form in areas with weakly developed perineuronal nets (PNNs), display non-homogeneous input-dependent distributions, predispose for plastic changes, and show input-specific re-organization after behavioral experience.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介基于经验的突触强度和神经元连接性的变化构成了学习和记忆的基础( ,,,)。在主要细胞(PCs)中获得绝大多数兴奋性输入的树突棘被认为是可塑性的关键部位。这些树突状突起通过电隔离以及通过突触后钙瞬变和分子信号传导级联的分隔来最小化兴奋性输入之间的干扰,从而反过来控制突触传递的强度。在皮质PC中,树突棘的结构变化(包括新的棘突的产生和现有棘突的消除)是突触强度,连通性和记忆形成的长期变化的基础。表达小白蛋白的GABA能性中间神经元(PVI)主要包含篮和轴突-轴突细胞。这些神经元靶向突触后细胞的周边区域,是PC活性的关键调节剂。由于它们的快速动作电位激发,与神经元网络振荡的相位锁定以及它们的离子通道和受体表达谱,已建议它们形成一个刚性的互连网络,以适应PC信号的快速信号传递和振荡夹带。根据这一概念,据报道,PVI基本上没有树突棘(,),但参见和href="#bib36" rid="bib36" class=" bibr popnode"> Sancho and Bloodgood(2018) ,该属性可能有助于快速传播信号和快速进行输入到输出的转换(href="#bib18" rid="bib18" class=" bibr popnode"> Hu等人,2014 )。但是,最近的报道显示,海马PVI中蛋白质表达的行为依赖变化(href="#bib5" rid="bib5" class=" bibr popnode"> Donato等人,2015 ),重塑的轴突分支(href="#bib34" rid="bib34" class=" bibr popnode"> Pieraut et al。,2014 )和针对PVI的兴奋性输入的功能可塑性(href =“ #bib12“ rid =” bib12“ class =” bibr popnode“> Hainmueller等人,2014 ),表明这些神经元参与了体验诱导的网络可塑性。受到几项研究的启发,这些研究是在不同类型的皮质中间神经元上脊椎的稀疏发生(href="#bib9" rid="bib9" class=" bibr popnode"> Guirado et al。,2014 ,< a href =“#bib21” rid =“ bib21” class =“ bibr popnode”>川口等人,2006 ,href="#bib22" rid="bib22" class=" bibr popnode"> Keck et al。,2011 ,href="#bib30" rid="bib30" class=" bibr popnode"> McBain et al。,1994 ,href =“#bib36” rid =“ bib36” class =“ bibr popnode”> Sancho and Bloodgood,2018 ,href="#bib37" rid="bib37" class=" bibr popnode"> Scheuss and Bonhoeffer,2014 ),我们评估了成年小鼠海马结构PVI中树突棘的存在和组织。我们显示齿状回(DG)中的一部分PVI,而不是角u(CA)地区1和3中的一部分,携带着高密度的树突棘。这些棘刺形成于神经周围神经网络(PNN)发育较弱的区域,显示出不均匀的依赖于输入的分布,易受塑性变化的影响,并且在行为经历后表现出特定于输入的重组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号