首页> 美国卫生研究院文献>Molecules and Cells >The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction
【2h】

The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction

机译:过氧化物酶和硫氧还蛋白在过氧化氢感测和信号转导中的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A challenge in the redox field is the elucidation of the molecular mechanisms, by which H2O2 mediates signal transduction in cells. This is relevant since redox pathways are disturbed in some pathologies. The transcription factor OxyR is the H2O2 sensor in bacteria, whereas Cys-based peroxidases are involved in the perception of this oxidant in eukaryotic cells. Three possible mechanisms may be involved in H2O2 signaling that are not mutually exclusive. In the simplest pathway, H2O2 signals through direct oxidation of the signaling protein, such as a phosphatase or a transcription factor. Although signaling proteins are frequently observed in the oxidized state in biological systems, in most cases their direct oxidation by H2O2 is too slow (101 M−1s−1 range) to outcompete Cys-based peroxidases and glutathione. In some particular cellular compartments (such as vicinity of NADPH oxidases), it is possible that a signaling protein faces extremely high H2O2 concentrations, making the direct oxidation feasible. Alternatively, high H2O2 levels can hyperoxidize peroxiredoxins leading to local building up of H2O2 that then could oxidize a signaling protein (floodgate hypothesis). In a second model, H2O2 oxidizes Cys-based peroxidases that then through thiol-disulfide reshuffling would transmit the oxidized equivalents to the signaling protein. The third model of signaling is centered on the reducing substrate of Cys-based peroxidases that in most cases is thioredoxin. Is this model, peroxiredoxins would signal by modulating the thioredoxin redox status. More kinetic data is required to allow the identification of the complex network of thiol switches.
机译:氧化还原领域的挑战是阐明分子机制,H2O2通过分子机制介导细胞中的信号转导。这很重要,因为在某些病理中氧化还原途径受到干扰。转录因子OxyR是细菌中的H2O2传感器,而基于Cys的过氧化物酶则参与了真核细胞对这种氧化剂的感知。 H2O2信号传输可能涉及三种互不排斥的机制。在最简单的途径中,H2O2通过信号蛋白(例如磷酸酶或转录因子)的直接氧化来发出信号。尽管在生物系统中经常观察到信号蛋白处于氧化态,但在大多数情况下,它们被H2O2直接氧化的速度太慢(10 1 M -1 s - 1 范围)胜过基于Cys的过氧化物酶和谷胱甘肽。在某些特定的细胞区室中(例如NADPH氧化酶附近),信号蛋白可能面对极高的H2O2浓度,从而使直接氧化成为可能。或者,高H2O2水平可过氧化过氧化物酶,导致H2O2局部积累,然后可氧化信号蛋白(泛洪假说)。在第二种模型中,H 2 O 2 氧化基于Cys的过氧化物酶,然后通过巯基-二硫键改组将氧化的等价物传输至信号蛋白。信号转导的第三个模型集中在基于Cys的过氧化物酶的还原底物上,该酶在大多数情况下是硫氧还蛋白。在此模型中,过氧化物酶会通过调节硫氧还蛋白的氧化还原状态来发出信号。需要更多的动力学数据以鉴定硫醇开关的复杂网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号