首页> 美国卫生研究院文献>International Journal of Molecular Sciences >Energetics of Glucose Metabolism: A Phenomenological Approach to Metabolic Network Modeling
【2h】

Energetics of Glucose Metabolism: A Phenomenological Approach to Metabolic Network Modeling

机译:葡萄糖代谢的能量学:代谢网络建模的现象学方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A new formalism to describe metabolic fluxes as well as membrane transport processes was developed. The new flux equations are comparable to other phenomenological laws. Michaelis-Menten like expressions, as well as flux equations of nonequilibrium thermodynamics, can be regarded as special cases of these new equations. For metabolic network modeling, variable conductances and driving forces are required to enable pathway control and to allow a rapid response to perturbations. When applied to oxidative phosphorylation, results of simulations show that whole oxidative phosphorylation cannot be described as a two-flux-system according to nonequilibrium thermodynamics, although all coupled reactions per se fulfill the equations of this theory. Simulations show that activation of ATP-coupled load reactions plus glucose oxidation is brought about by an increase of only two different conductances: a [Ca2+] dependent increase of cytosolic load conductances, and an increase of phosphofructokinase conductance by [AMP], which in turn becomes increased through [ADP] generation by those load reactions. In ventricular myocytes, this feedback mechanism is sufficient to increase cellular power output and O2 consumption several fold, without any appreciable impairment of energetic parameters. Glucose oxidation proceeds near maximal power output, since transformed input and output conductances are nearly equal, yielding an efficiency of about 0.5. This conductance matching is fulfilled also by glucose oxidation of β-cells. But, as a price for the metabolic mechanism of glucose recognition, β-cells have only a limited capability to increase their power output.
机译:一种新的形式主义描述了代谢通量以及膜运输过程。新的通量方程与其他现象学定律具有可比性。像Michaelis-Menten这样的表达式以及非平衡热力学的通量方程式,可以看作是这些新方程式的特例。对于代谢网络建模,需要可变电导和驱动力以实现路径控制并允许对扰动做出快速响应。当应用于氧化磷酸化时,模拟结果表明,尽管所有耦合反应本身都满足该理论的方程式,但根据非平衡热力学,整个氧化磷酸化不能描述为两通系统。模拟表明,ATP偶联负载反应加葡萄糖氧化的激活仅通过增加两种不同的电导来实现:依赖于[Ca 2 + ]的胞质负载电导增加,以及磷酸果糖激酶增加[AMP]的电导率,而这些负载反过来又通过[ADP]的生成而增加。在心室肌细胞中,这种反馈机制足以将细胞功率输出和O2消耗增加几倍,而对能量参数没有任何明显的损害。葡萄糖氧化接近最大功率输出,因为转换后的输入和输出电导几乎相等,因此效率约为0.5。该电导匹配也通过β细胞的葡萄糖氧化来实现。但是,作为葡萄糖识别代谢机制的代价,β细胞增加功率输出的能力有限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号