首页> 美国卫生研究院文献>The ISME Journal >The stoichiometry of coral-dinoflagellate symbiosis: carbon and nitrogen cycles are balanced in the recycling and double translocation system
【2h】

The stoichiometry of coral-dinoflagellate symbiosis: carbon and nitrogen cycles are balanced in the recycling and double translocation system

机译:珊瑚-鞭毛共生的化学计量:碳和氮循环在再循环和双重易位系统中得到平衡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Symbioses between microalgae and animal hosts have the advantage of acquiring and sharing autotrophically produced organic carbon (C) as their energy source. However, the stoichiometry and turnover rates of biological elements in symbioses are not fully understood because of complicated metabolic interactions. We report the first comprehensive and simultaneous measurement of C and nitrogen (N) flows through coral–dinoflagellate symbiosis by using the unique approach of dual-isotope labeling with 13C and 15N, in situ chasing, and isotope-mixing models. The coral autotrophy occurred with much lower C:N ratios than previously thought, and the autotrophically produced N-rich organic matter was efficiently transferred to the animal host through two different pathways. In contrast to the dynamic N cycles within the symbiosis, the N uptake from the ambient seawater was extremely limited, which enabled the coral symbiosis to sustain N with a long turnover time (1 year). These findings suggest that coral endosymbionts are not under N limitation but are actively producing organic N and driving microscale N cycles in the reef ecosystem. The present techniques could be applied to further quantify the C and N cycles in other symbiotic interactions and reveal their ecological advantages.
机译:微藻类与动物宿主之间的共生酶具有获取和共享自养产生的有机碳(C)作为其能源的优势。然而,由于复杂的代谢相互作用,共生酶中生物元素的化学计量和周转率尚未完全被理解。我们报告了通过使用 13 C和 15 的双同位素标记的独特方法,首次对珊瑚和鞭毛虫共生过程中的碳和氮(N)流量进行了全面的同步测量N,原位追踪和同位素混合模型。珊瑚自养发生的C:N比要比以前想象的要低得多,并且自养产生的富氮有机物通过两种不同的途径有效地转移到动物宿主中。与共生中动态的N循环相反,周围海水对N的吸收非常有限,这使珊瑚共生能够以较长的转换时间(1年)维持N。这些发现表明,珊瑚内共生菌不受氮的限制,而是在珊瑚礁生态系统中积极产生有机氮并驱动微量氮循环。本技术可用于进一步量化其他共生相互作用中的C和N循环,并揭示它们的生态优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号