首页> 美国卫生研究院文献>iScience >The Self-Passivation Mechanism in Degradation of BiVO4 Photoanode
【2h】

The Self-Passivation Mechanism in Degradation of BiVO4 Photoanode

机译:BiVO4光电阳极降解中的自钝化机理

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionArtificial photosynthesis, which captures and stores solar energy in the chemical bonds of a fuel, is a potential solution to the energy storage problem (). Solar-assisted water splitting to produce hydrogen fuel has received significant research interest in this regard (, , , ). The photoelectrochemical cell (PEC) is a versatile tool for photolysis of water where a semiconductor is used to harvest solar energy and an external bias is applied to facilitate the water splitting reactions (, , , ). Such electrochemical water photolysis was first reported by Fujima and Honda using a TiO2 (band gap = 3.0–3.2 eV) photoanode (). For more efficient photolysis, a narrower bandgap and a valence band edge above 2.0 eV versus reversible hydrogen electrode (RHE) is mandatory to provide sufficient overpotential for holes to oxidize water at the anode. Simultaneously, a negative conduction band edge is required at the cathode for electrons to reduce water. The efficiency of light absorption is principally determined by the bandgap of the semiconductor, which is the basis of theoretical calculations of solar to hydrogen conversion efficiency. The bandgap is also a measure of the stability of a compound, and thus semiconductors with narrow bandgaps are usually vulnerable to degradation in photoelectrodes ().BiVO4 photoanode has a narrower bandgap of 2.4 eV versus RHE, which contributes to a high, theoretical solar-to-hydrogen conversion efficiency of 9.2% (, ). This remarkable efficiency has drawn tremendous research interest, yet its vulnerability to photocorrosion has been its weakness. BiVO4 suffers from chemical instability in both acidic and alkaline conditions. Besides, its degradation is notably promoted by applied bias and light illumination when used as a photoanode in PEC (, ). Researchers have examined mainly three strategies to protect BiVO4 electrodes against photocorrosion: class="simple" style="list-style-type:none" id="olist0010">
  • (a)Adopt an external passivation layer on the photoanode to avoid direct contact with the electrolyte (href="#bib6" rid="bib6" class=" bibr popnode">Fan et al., 1983, href="#bib12" rid="bib12" class=" bibr popnode">Hu et al., 2014, href="#bib23" rid="bib23" class=" bibr popnode">McDowell et al., 2014),
  • (b)Use co-catalysts to alter the thermodynamic reduction/oxidation potential of photo-generated holes/electrons, to facilitate oxygen/hydrogen evolution reactions instead of detrimental side reactions (href="#bib14" rid="bib14" class=" bibr popnode">Kim and Choi, 2014, href="#bib29" rid="bib29" class=" bibr popnode">Seabold and Choi, 2012, href="#bib40" rid="bib40" class=" bibr popnode">Zhong and Gamelin, 2009),
  • (c)Manipulate the electrolyte composition to retard dissolution. For example, when the electrolyte is saturated with V ions, dissolution of BiVO4 photoanode is suppressed (href="#bib15" rid="bib15" class=" bibr popnode">Lee and Choi, 2017).Considerable experimental effort has been devoted to the enhancement of stability via the three strategies, but the effort expended in understanding the degradation mechanism is limited. Several studies have fragmentally indicated the anodic photo-degradation propensity of the V ion in BiVO4 (href="#bib5" rid="bib5" class=" bibr popnode">Ding et al., 2013, href="#bib15" rid="bib15" class=" bibr popnode">Lee and Choi, 2017, href="#bib23" rid="bib23" class=" bibr popnode">McDowell et al., 2014), which probably prompted Choi et al. to saturate the electrolyte with V ions to retard its degradation (href="#bib15" rid="bib15" class=" bibr popnode">Lee and Choi, 2017). Although, this approach reduced photodegradation, it did not throw any light on the degradation mechanism. A recent study by Toma et al. did confirm the dissolution of V from BiVO4, but it concluded that the rates of dissolution of both Bi and V would eventually become stoichiometric upon extensive corrosion (href="#bib32" rid="bib32" class=" bibr popnode">Toma et al., 2016). In this paper we propose a variation to this mechanism of degradation by in-depth mechanistic and theoretical studies that will contribute to the fundamental understanding. BiVO4 has emerged as a versatile platform for understanding the photoelectrochemical behavior of transition metal oxide semiconductors (href="#bib30" rid="bib30" class=" bibr popnode">Sharp et al., 2017), where the observed material behavior could potentially be applied to similar types of materials.
  • 机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介人工光合作用可以捕获并存储燃料化学键中的太阳能。能量存储问题的潜在解决方案。在这方面,太阳能辅助水分解生产氢燃料已经引起了广泛的研究兴趣。光电化学电池(PEC)是一种用于水的光解的多功能工具,其中使用半导体来收集太阳能,并施加外部偏压以促进水分解反应(,,,)。 Fujima和Honda首次报道了这种电化学水光解法,使用的是TiO2(带隙= 3.0-3.2 eV)光电阳极()。为了更有效地进行光解,与可逆氢电极(RHE)相比,窄带隙和价带边缘大于2.0 eV是必不可少的,以为空穴提供足够的超电势以在阳极氧化水。同时,在阴极上需要负导带边缘以使电子还原水。光吸收的效率主要由半导体的带隙确定,这是太阳能到氢的转换效率的理论计算的基础。带隙也是衡量化合物稳定性的量度,因此带隙窄的半导体通常易受光电极降解的影响。BiVO4光电阳极的带隙较RHE窄,为2.4 eV,这有助于获得较高的理论太阳光能。氢转化效率为9.2%(,)。这种非凡的效率吸引了巨大的研究兴趣,但是其易受光腐蚀的缺点是其弱点。 BiVO4在酸性和碱性条件下均具有化学不稳定性。此外,当在PEC(,)中用作光电阳极时,通过施加偏压和光照可以显着促进其降解。研究人员主要研究了三种保护BiVO4电极免受光腐蚀的策略: class =“ simple” style =“ list-style-type:none” id =“ olist0010”> <!-list-behavior = simple prefix-word = mark-type = none max-label-size = 3->
  • (a)在光电阳极上采用外部钝化层,以避免与电解质直接接触(href =“#bib6” rid =“ bib6” class =“ bibr popnode”>范等人,1983 ,href="#bib12" rid="bib12" class=" bibr popnode">胡等等,2014 ,href="#bib23" rid="bib23" class=" bibr popnode"> McDowell等,2014 ),
  • (b)使用助催化剂来改变光生空穴/电子的热力学还原/氧化势,以促进氧/氢的释放反应,而不是有害的副反应(href =”# bib14“ rid =” bib14“ class =” bibr popnode“> Kim and Choi,2014 ,href="#bib29" rid="bib29" class=" bibr popnode"> Seabold and Choi,2012 < / a>,href =“#bib40 “ rid =” bib40“ class =” bibr popnode“> Zhong和Gamelin,2009 ),
  • (c)操纵电解质成分来阻止解散。例如,当电解质充满V离子时,BiVO4光电阳极的溶解受到抑制(href="#bib15" rid="bib15" class=" bibr popnode"> Lee and Choi,2017 )。 通过这三种策略,人们一直致力于提高稳定性,但是在理解降解机理上的努力是有限的。几项研究零碎地表明了BiVO4中V离子的阳极光降解趋势(href="#bib5" rid="bib5" class=" bibr popnode"> Ding等人,2013 ,< a href =“#bib15” rid =“ bib15” class =“ bibr popnode”>李与崔,2017年,href="#bib23" rid="bib23" class=" bibr popnode"> McDowell等人,2014 ),这可能是崔等人的想法。将电解质中的V离子饱和以阻止其降解(href="#bib15" rid="bib15" class=" bibr popnode"> Lee and Choi,2017 )。尽管这种方法减少了光降解作用,但并未对降解机理产生任何影响。 Toma等人的最新研究。确实证实了V从BiVO4中的溶解,但是得出结论,Bi和V的溶解速率最终将在大范围腐蚀后变成化学计量的(href="#bib32" rid="bib32" class=" bibr popnode"> Toma等人,2016 )。在本文中,我们通过深入的机理和理论研究提出了这种降解机理的变体,这将有助于基础理解。 BiVO4已成为理解过渡金属氧化物半导体的光电化学行为的通用平台(href="#bib30" rid="bib30" class=" bibr popnode"> Sharp et al。,2017 ),观察到的材料行为可能会应用于相似类型的材料。
  • 著录项

    相似文献

    • 外文文献
    • 中文文献
    • 专利
    代理获取

    客服邮箱:kefu@zhangqiaokeyan.com

    京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
    • 客服微信

    • 服务号