首页> 美国卫生研究院文献>iScience >Geometry-Dependent Spectroscopic Contrast in Deep Tissues
【2h】

Geometry-Dependent Spectroscopic Contrast in Deep Tissues

机译:深层组织中的几何相关光谱对比

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionIn contrast to that produced by selective absorption, the spectral modulation of light reflected or scattered by a non-luminous object is mainly due to elastic interactions between the input light and micro- and nano-structures. This spectral modulation may bring about spectroscopic contrasts manifested as spectral centroid shifts in the back-scattered light fields. Since Robert Hooke and Isaac Newton revealed the basis of structural coloration (, ), fascinating colors created by natural structures have attracted considerable research interests (, ). In biology, structural colors are commonly observed under sunlight or white light on the surfaces of animals and plants (, , , ) (skin, feathers, flowers, and epicarp). However, as turbid tissues are opaque to visible light, the direct observation of structural colors originating from beneath biological tissues is extremely difficult.The spectroscopic properties of deep biological tissues are commonly investigated within the near-infrared (NIR) window (650–1,350 nm), where the light has its maximum penetration. For more than a decade, an NIR reflectance microscopic technique termed spectroscopic optical coherence tomography (SOCT) has been developed (, , , ). SOCT detects the light signals from a micrometer-scale sample volume while rejecting the light from the background, a unique capability known as optical sectioning, which makes it possible to probe microstructures through 1- to 2-mm opaque tissues. The effect of scatterer size on the back-scattered spectra has led to the use of SOCT to evaluate the cell nuclei (, , , href="#bib47" rid="bib47" class=" bibr popnode">Xu et al., 2005) and probe nanoscale information (href="#bib2" rid="bib2" class=" bibr popnode">Azarin et al., 2015, href="#bib53" rid="bib53" class=" bibr popnode">Yi et al., 2013). The spectra of random microspheres packing have been investigated extensively (href="#bib38" rid="bib38" class=" bibr popnode">Tseng et al., 2006); detailed understanding of nanoscale shape on spectroscopic contrast, however, remains elusive.At the nanometer level, the two fundamental geometries of biological tissues are spherical geometry, such as mitochondria and various intracellular granules, and cylindrical geometry, such as motile cilia, collagen fibrils, and elastic fibers. It is intriguing to know how different nanoscale geometries may alter the spectrum of scattered light and whether it is possible to extract biologically relevant information from their spectroscopic signatures. The answers to these questions are pertinent to a variety of clinical and scientific research fields where optical reflectance imaging techniques are widely used, such as noninvasive anatomical and functional imaging of microstructures in the respiratory mucosa, the blood vessel wall, the posterior segment of the eye, the skin, and the gastrointestinal mucosa (href="#bib10" rid="bib10" class=" bibr popnode">Fujimoto, 2003, href="#bib13" rid="bib13" class=" bibr popnode">Huang et al., 1991, href="#bib18" rid="bib18" class=" bibr popnode">Liu et al., 2011, href="#bib36" rid="bib36" class=" bibr popnode">Tearney et al., 1997, href="#bib51" rid="bib51" class=" bibr popnode">Yelin et al., 2006, href="#bib54" rid="bib54" class=" bibr popnode">Yun et al., 2006), nanoscale mapping of nuclear architecture (href="#bib40" rid="bib40" class=" bibr popnode">Uttam et al., 2015, href="#bib43" rid="bib43" class=" bibr popnode">Wang et al., 2010), or changing of partial wave spectroscopy signals by chromosome condensation (href="#bib14" rid="bib14" class=" bibr popnode">Kim et al., 2011). In this study, we established numerical models of nano-spheres and nano-cylinders and discovered that transversely oriented and regularly arranged nano-cylindrical scatterers are more likely to generate spectral centroid shifts toward the long wavelengths within the spectral window of 700–950 nm than nano-spheres, which tend to exhibit shifts toward the short end. Using a form of SOCT that operates in 700–950 nm, we verified the above-mentioned predictions on a variety of natural nano-cylindrical structures, such as motile cilia and extracellular matrix containing nanoscale fibrous structures, which exhibited a striking and consistent spectroscopic contrast against the surrounding background tissues. To our knowledge, this study is the first to demonstrate geometry-dependent spectroscopic contrasts from nanometer-scale features in deep mammalian tissues in situ and in vivo. Interestingly, we additionally found that this geometry-dependent spectroscopic contrast is sensitive to external stress, probably due to the changes in the orientation, degree of alignment, and spacing of the nano-cylinders.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介与选择性吸收所产生的反射相反,光的光谱调制被反射或散射非发光物体主要是由于输入光与微米和纳米结构之间的弹性相互作用。这种光谱调制可以引起光谱对比度,该光谱对比度表现为反向散射光场中的光谱质心偏移。自从罗伯特·胡克(Robert Hooke)和艾萨克·牛顿(Isaac Newton)揭示了结构着色的基础(,)以来,由自然结构产生的引人入胜的颜色已经引起了相当大的研究兴趣(,)。在生物学中,通常在阳光或白光下在动植物(皮肤,羽毛,花朵和果皮)的表面上观察到结构颜色。但是,由于混浊的组织对可见光是不透明的,因此直接观察源自生物组织下方的结构颜色非常困难。通常在近红外(NIR)窗口(650-1,350 nm)中研究深层生物组织的光谱特性),光线具有最大的穿透力。十多年来,已开发出一种称为光谱光学相干断层扫描(SOCT)的近红外反射显微镜技术(,,,,)。 SOCT检测来自微米级样本量的光信号,同时拒绝来自背景的光,这是一种独特的功能,称为光学切片,可以通过1到2毫米不透明的组织探测微结构。散射体大小对后向散射光谱的影响已导致使用SOCT评估细胞核(,,,,href="#bib47" rid="bib47" class=" bibr popnode"> Xu等,2005 )和纳米级信息(href="#bib2" rid="bib2" class=" bibr popnode"> Azarin等人,2015 ,href =“# bib53“ rid =” bib53“ class =” bibr popnode“> Yi等人,2013 )。随机微球堆积的光谱已被广泛研究(href="#bib38" rid="bib38" class=" bibr popnode"> Tseng等,2006 );但是,在光谱对比上对纳米级形状的详细了解仍然难以捉摸。在纳米级,生物组织的两个基本几何形状是球形几何形状,例如线粒体和各种细胞内颗粒;以及圆柱形几何形状,例如活动性纤毛,胶原纤维,和弹性纤维。令人着迷的是,不同的纳米级几何形状如何改变散射光的光谱,以及是否有可能从其光谱特征中提取生物学相关的信息。这些问题的答案与广泛使用光学反射成像技术的各种临床和科学研究领域有关,例如呼吸道粘膜,血管壁,眼后段的微结构的无创解剖和功能成像,皮肤和胃肠道粘膜(href="#bib10" rid="bib10" class=" bibr popnode">藤本,2003 ,href =“#bib13” rid =“ bib13” class =“ bibr popnode”> Huang等,1991 ,href="#bib18" rid="bib18" class=" bibr popnode"> Liu等,2011 ,< a href =“#bib36” rid =“ bib36” class =“ bibr popnode”> Tearney等人,1997 ,href="#bib51" rid="bib51" class=" bibr popnode"> Yelin等,2006 ,href="#bib54" rid="bib54" class=" bibr popnode"> Yun等,2006 ),核结构的纳米级制图(< a href =“#bib40” rid =“ bib40” class =“ bibr popnode”> Uttam等人,2015 ,href="#bib43" rid="bib43" class=" bibr popnode"> Wang et al。,2010 ),或通过染色体凝聚改变部分波谱信号(href="#bib14" rid="bib14" class=" bibr popnode"> Kim等人,2011 )。在这项研究中,我们建立了纳米球和纳米圆柱体的数值模型,并发现横向取向和规则排列的纳米圆柱体散射体比700-950 nm光谱窗口内的长波长更可能产生光谱质心偏移。纳米球倾向于向短端移动。我们使用一种在700-950 nm范围内工作的SOCT形式,验证了上述对各种天然纳米圆柱结构的预测,例如运动的纤毛和含有纳米级纤维结构的细胞外基质,它们展现出惊人且一致的光谱对比反对周围的背景组织。据我们所知,这项研究是第一个从原位和体内哺乳动物深层组织中纳米尺度特征中证明几何依赖性光谱对比的研究。有趣的是,我们还发现,这种依赖于几何形状的光谱对比对外部应力敏感,这可能是由于纳米圆柱体的方向,排列程度和间距的变化所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号