class='head no_bottom_margin' id='sec1title'>Int'/> A Bioluminescence Resonance Energy Transfer-Based Approach for Determining Antibody-Receptor Occupancy In Vivo
首页> 美国卫生研究院文献>iScience >A Bioluminescence Resonance Energy Transfer-Based Approach for Determining Antibody-Receptor Occupancy In Vivo
【2h】

A Bioluminescence Resonance Energy Transfer-Based Approach for Determining Antibody-Receptor Occupancy In Vivo

机译:一种基于生物发光共振能量转移的方法来确定体内的抗体受体占有率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionMonoclonal antibodies (mAbs) are often regarded as “magic bullets” (), which have been applied toward the treatment of an array of human diseases (). These therapeutic mAbs are engineered to specifically bind their cognate antigens with high affinities and have been deployed for neutralizing pathologic factors, blocking cellular signaling, and stimulating immune functions (). Therapeutic mAbs have shown great promise in cancer treatments given their therapeutically desirable characteristics of long plasma half-lives, high selectivity, and limited off-target toxicity (). To date, over 30 mAbs (and rising) have been approved for treatment of various types of cancers, including hematologic malignancies and solid tumors (, , , , ).Like other targeted therapies, mAbs can only elicit their desired pharmacological effects when directly bound to their cognate targets. Therefore elucidating the target engagement of a given mAb is a crucial step toward characterizing its therapeutic potential and in determining its pharmacological dynamics, which helps define the optimal dosing regimens to achieve maximal therapeutic efficacy. Target engagement, or receptor occupancy (RO), is the ratio of occupied receptors of interest over total receptors of interest present on the targeted cells. Establishing the RO profile of any therapeutic mAb via preclinical or clinical studies is critical toward projecting the first-in-human dosages, to ensure minimal anticipated biological effect level and minimize potential dose-limiting toxicity (, ; ). Antibody RO is often a valuable intermediate measurement for establishing dose (or exposure)-response relationships, especially at early stages of mAb development when defined biomarkers for an mAb's pharmacological effects are not available (, , ). Although many other factors should be considered when interpreting RO, such as receptor epitope properties (href="#bib31" rid="bib31" class=" bibr popnode">Lipman et al., 2005, href="#bib46" rid="bib46" class=" bibr popnode">Rook et al., 2015), antibody-receptor binding is the first step required to elicit a pharmacological effect, and the binding kinetics of a given mAb to its targets within the tumor microenvironment dictates its general therapeutic potential.Tremendous efforts have been expended toward creating a reliable and cost-effective method to quantify antibody RO. Flow cytometry (FCM), owing to its ease of operation, is routinely used to determine RO (href="#bib58" rid="bib58" class=" bibr popnode">Topalian et al., 2012, href="#bib30" rid="bib30" class=" bibr popnode">Liang et al., 2016); however, FCM is only ideally suited to antibodies that have targets present on circulating blood cells. Moreover, the constraints on sampling accessibility and high spatial heterogeneity often hinder the use of FCM toward antibodies targeting peripheral tissues. Large disparities have been observed between antibody concentrations in circulating plasma and in solid tumors (href="#bib55" rid="bib55" class=" bibr popnode">Suh et al., 2016, href="#bib3" rid="bib3" class=" bibr popnode">Bartelink et al., 2018). Owing to the large sizes, high binding affinities, and high target specificities (href="#bib63" rid="bib63" class=" bibr popnode">Weinstein et al., 1987), the distribution of antibodies in dense interstitial matrix is often limited to the perivascular area, resulting in fractional accessibility of targets to mAbs. In solid tumors, antibody-target binding kinetics and the resultant RO are subject to complex biological variables, including tumor-blood perfusion, antibody extravasation across the tumor vasculature, tumor extracellular matrix densities, and the expression levels and accessibility of antigens on tumor cells that are recognized by mAbs. All these factors complicate reproducibly quantifying antibody-target binding kinetics and the resultant RO in solid tumors.One approach to quantify antibody RO in solid tumors is to perform immunohistochemistry staining on tumor biopsies. However, this approach lacks temporal resolution and often fails to incorporate dynamic factors present in in vivo situations that could greatly influence mAb-target interactions (href="#bib21" rid="bib21" class=" bibr popnode">Gebhart et al., 2016). Another approach to assess antibody RO within solid tumors is to perform radiotracer replacement studies, which usually require two steps: first, giving subjects a small dose of radiolabeled antibody, and then giving increasing doses of unlabeled antibody. Owing to competitive binding, the radioactivity levels in the tumors decrease as doses of unlabeled antibody increase, indicating an increased RO, until a plateau is gradually achieved. Determining mAb RO using this approach is often complicated by the rapid endocytosis of the radiotracers by tumors (href="#bib4" rid="bib4" class=" bibr popnode">Boswell et al., 2010). The estimation of RO is further biased by the unstable radioactivity in the control group, which should have relatively constant radioactivity without competitive replacement by unlabeled antibodies (href="#bib12" rid="bib12" class=" bibr popnode">Cunningham et al., 2005).Other radiolabeling methods, including positron emission tomography/single-photon emission computed tomography, are often applied to quantify mAb pharmacokinetics (PK), tissue distribution, and tissue-specific RO. These approaches raise safety concerns when determining the mAb RO due to elevated radiation accumulation (href="#bib6" rid="bib6" class=" bibr popnode">Burvenich et al., 2018). Fluorescence imaging has also been explored for both preclinical and clinical applications (href="#bib47" rid="bib47" class=" bibr popnode">Rosenthal et al., 2015, href="#bib61" rid="bib61" class=" bibr popnode">Warram et al., 2015, href="#bib48" rid="bib48" class=" bibr popnode">Saccomano et al., 2016, href="#bib28" rid="bib28" class=" bibr popnode">Lamberts et al., 2017, href="#bib17" rid="bib17" class=" bibr popnode">Fornasier et al., 2018, href="#bib35" rid="bib35" class=" bibr popnode">Miller et al., 2018). However, fluorescent imaging suffers from fluorescence quenching that is caused by external excitation light, and poor signal:noise ratios due to the high autofluorescence of biological tissues. Aside from these intrinsic disadvantages, most current non-invasive in vivo imaging methods have a common drawback to RO quantification, namely, they are unable to distinguish signals arising due to specific target engagement versus non-specific background signals. At the tissue level, it is difficult to distinguish the signals of bound mAbs from those of free mAbs present in blood circulating within tissues. Probes or tracers can exhibit non-specific binding and residualization in tumors, which greatly bias RO quantification (href="#bib12" rid="bib12" class=" bibr popnode">Cunningham et al., 2005, href="#bib40" rid="bib40" class=" bibr popnode">Patel and Gibson, 2008, href="#bib39" rid="bib39" class=" bibr popnode">Ogawa et al., 2009). Therefore a non-invasive imaging technology that exclusively enables the visualization of antibody-target interactions in vivo is greatly desired.In the present study, we developed a bioluminescence resonance energy transfer (BRET)-based system to non-invasively quantify antibody RO in live animals. BRET detection schemes are based on Förster resonance energy transfer, in which resonance energy is transmitted from a luciferase molecule (donor) during substrate catalysis to a fluorescent molecule (acceptor), which then re-emits the light according to its own emission spectra (href="#bib13" rid="bib13" class=" bibr popnode">Dragulescu-Andrasi et al., 2011). In BRET-based protein-protein interaction studies, the donor (luciferases) and acceptor (fluorophores) molecules are tagged onto two distinct proteins of interest. Interaction between the proteins of interest, upon appropriate stimuli, brings the luciferase and fluorophore into close proximity, enabling the luciferase to efficiently transmit energy to the fluorophore resulting in BRET (href="#bib34" rid="bib34" class=" bibr popnode">Mandic et al., 2014, href="#bib10" rid="bib10" class=" bibr popnode">Ciruela and Fernandez-Duenas, 2015, href="#bib33" rid="bib33" class=" bibr popnode">Machleidt et al., 2015, href="#bib11" rid="bib11" class=" bibr popnode">Coriano et al., 2016, href="#bib22" rid="bib22" class=" bibr popnode">Goyet et al., 2016, href="#bib2" rid="bib2" class=" bibr popnode">Alcobia et al., 2018, href="#bib41" rid="bib41" class=" bibr popnode">Rathod et al., 2018). BRET efficiency is governed by both the distance and orientation of the donor and acceptor molecules relative to each other. Given the stringent requirements of distance separation (∼10 nm) between donor-acceptor molecules for efficient BRET, it offers a large signal:noise ratio and high sensitivity at physiologically relevant temporal resolutions and therefore has found wide utility in ligand-target interaction studies (href="#bib33" rid="bib33" class=" bibr popnode">Machleidt et al., 2015, href="#bib36" rid="bib36" class=" bibr popnode">Mo and Fu, 2016). Recently, BRET imaging was applied to visualize a propranolol-dye conjugate (acceptor-ligand) binding to an N-terminal NanoLuc (NLuc)-tagged human G-protein-coupled receptor β2-adrenoreceptor (donor-receptor) in real time (href="#bib2" rid="bib2" class=" bibr popnode">Alcobia et al., 2018), demonstrating the noteworthy performance of BRET imaging for monitoring ligand-receptor binding in vivo. In the present study, we extended the BRET approach to clinically attractive mAb therapies. Cetuximab (CTX), a therapeutic mAb currently deployed in many clinical trials for solid tumors, and its cognate target receptor, epidermal growth factor receptor (EGFR), were selected as a model system. EGFR is one of the most well-studied receptors; mediates key growth factor response pathways driving cell survival, proliferation, and growth; and has been implicated (overexpression/mutations) in numerous human malignancies (href="#bib25" rid="bib25" class=" bibr popnode">Han and Lo, 2012, href="#bib51" rid="bib51" class=" bibr popnode">Seshacharyulu et al., 2012, href="#bib9" rid="bib9" class=" bibr popnode">Ceresa and Peterson, 2014, href="#bib54" rid="bib54" class=" bibr popnode">Song et al., 2016, href="#bib32" rid="bib32" class=" bibr popnode">Liu et al., 2017, href="#bib53" rid="bib53" class=" bibr popnode">Sigismund et al., 2018). Herein, we present a BRET-based imaging approach to directly monitor the temporal profiles of antibody-target RO in live animals using CTX binding to EGFR.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介单克隆抗体(mAb)通常被视为“魔术子弹”(),已被用于治疗一系列人类疾病()。这些治疗性单克隆抗体经过工程改造,可以高亲和力特异性结合其同源抗原,并已被用于中和病理因素,阻断细胞信号传导和刺激免疫功能()。鉴于治疗性单克隆抗体具有血浆半衰期长,选择性高和脱靶毒性有限的治疗理想特性,因此在癌症治疗中已显示出巨大的希望。迄今为止,已经批准了30多种mAb(并且还在不断增加中)用于治疗各种类型的癌症,包括血液系统恶性肿瘤和实体瘤(``,'',``)。与其他靶向疗法一样,mAb仅在直接结合后才能产生所需的药理作用。他们的目标。因此,阐明给定mAb的靶标结合是表征其治疗潜力和确定其药理动力学的关键步骤,这有助于确定实现最大治疗效果的最佳给药方案。靶标参与或受体占有率(RO)是靶标细胞上存在的感兴趣的受体与感兴趣的总受体的比率。通过临床前或临床研究建立任何治疗性mAb的RO曲线对于预测人中首次使用的剂量,确保最小的预期生物学效应水平和最小的潜在剂量限制毒性(,)至关重要。抗体反渗透通常是用于建立剂量(或暴露)-反应关系的有价值的中间测量方法,尤其是在无法获得针对单克隆抗体药理作用的明确生物标记物(“”)的单克隆抗体开发的早期阶段。尽管在解释RO时还应考虑许多其他因素,例如受体的表位特性(href="#bib31" rid="bib31" class=" bibr popnode"> Lipman等,2005 ,href =“#bib46” rid =“ bib46” class =“ bibr popnode”> Rook等人,2015 ),抗体-受体结合是产生药理作用所需的第一步,其结合动力学是在肿瘤微环境中将特定的mAb与其靶标联系起来决定了其一般的治疗潜力。付出了巨大的努力,以建立一种可靠且经济高效的定量RO抗体的方法。由于易于操作,流式细胞术(FCM)通常用于确定RO(href="#bib58" rid="bib58" class=" bibr popnode"> Topalian et al。,2012 ,href="#bib30" rid="bib30" class=" bibr popnode">梁等人,2016 );但是,FCM仅理想地适用于存在于循环血细胞上的靶标的抗体。此外,对采样可及性和高空间异质性的限制通常会阻碍FCM应用于靶向外周组织的抗体。已观察到循环血浆和实体瘤中抗体浓度之间存在很大差异(href="#bib55" rid="bib55" class=" bibr popnode"> Suh等人,2016 ,href =“#bib3” rid =“ bib3” class =“ bibr popnode”> Bartelink等人,2018 )。由于尺寸大,结合亲和力高和靶标特异性高(href="#bib63" rid="bib63" class=" bibr popnode"> Weinstein等,1987 ),致密间隙基质中的抗体通常仅限于血管周围区域,导致靶标对mAb的部分可及性。在实体瘤中,抗体-靶标的结合动力学和所得的RO受到复杂的生物学变量的影响,包括肿瘤血液灌注,抗体在肿瘤血管中的渗透,肿瘤细胞外基质的密度以及抗原在肿瘤细胞上的表达水平和可及性,被单克隆抗体识别。所有这些因素使可重复地定量实体靶标中的抗体-靶标结合动力学和所得的RO变得复杂。定量实体瘤中的抗体RO的一种方法是对肿瘤活检进行免疫组织化学染色。但是,这种方法缺乏时间分辨率,并且常常无法纳入可能严重影响mAb-靶标相互作用的活体情况下存在的动态因素(href="#bib21" rid="bib21" class=" bibr popnode"> Gebhart等等,2016 )。评估实体瘤中抗体RO的另一种方法是进行放射性示踪剂替代研究,这通常需要两个步骤:首先,给受试者提供小剂量的放射性标记抗体,然后再增加剂量的未标记抗体。由于竞争性结合,随着未标记抗体剂量的增加,肿瘤中的放射性水平降低,表示RO升高,直到逐渐达到平稳状态。使用这种方法测定mAb RO通常会因肿瘤对放射性示踪剂的快速内吞作用而变得复杂(href="#bib4" rid="bib4" class=" bibr popnode"> Boswell等,2010 ) 。 RO的估计值进一步受到对照组放射线不稳定的影响,该放射线应具有相对恒定的放射度,而无标记抗体的竞争性替代(href="#bib12" rid="bib12" class=" bibr popnode"> Cunningham et al。,2005 )。其他放射性标记方法,包括正电子发射断层扫描/单光子发射计算机断层扫描,通常用于量化mAb药代动力学(PK),组织分布和组织特异性RO。这些方法在确定mAb RO时会增加安全性,这是由于辐射积累增加所致(href="#bib6" rid="bib6" class=" bibr popnode"> Burvenich et al。,2018 )。荧光成像也已经在临床前和临床应用中得到了探索(href="#bib47" rid="bib47" class=" bibr popnode"> Rosenthal等,2015 ,href =“# bib61“ rid =” bib61“ class =” bibr popnode“> Warram等人,2015 ,href="#bib48" rid="bib48" class=" bibr popnode"> Saccomano等人, 2016 ,href="#bib28" rid="bib28" class=" bibr popnode"> Lamberts等人,2017 ,href =“#bib17” rid =“ bib17” class =“ bibr popnode”> Fornasier等人,2018 ,href="#bib35" rid="bib35" class=" bibr popnode"> Miller等人,2018 )。然而,荧光成像遭受由外部激发光引起的荧光猝灭,以及由于生物组织的高自发荧光而导致的差的信噪比。除了这些固有的缺点外,大多数当前的非侵入式体内成像方法对RO量化也有一个共同的缺点,即它们无法区分由于特定目标参与和非特定背景信号而产生的信号。在组织水平上,很难将结合的mAb信号与组织内循环血液中存在的游离mAb信号区分开。探针或示踪剂可在肿瘤中表现出非特异性结合和残基化,这极大地影响了RO定量(href="#bib12" rid="bib12" class=" bibr popnode"> Cunningham等,2005 ,href="#bib40" rid="bib40" class=" bibr popnode"> Patel and Gibson,2008 ,href =“#bib39” rid =“ bib39” class =“ bibr popnode” > Ogawa et al。,2009 )。因此,迫切需要一种无创成像技术,专门用于可视化活体内抗体与靶标之间的相互作用。在本研究中,我们开发了一种基于生物发光共振能量转移(BRET)的系统,可对活体中的抗体RO进行无创定量动物。 BRET检测方案基于Förster共振能量转移,其中共振能量在底物催化期间从萤光素酶分子(供体)传输到荧光分子(受体),然后根据其自身的发射光谱重新发射光(< a href =“#bib13” rid =“ bib13” class =“ bibr popnode”> Dragulescu-Andrasi等,2011 )。在基于BRET的蛋白质-蛋白质相互作用研究中,将供体(萤光素酶)和受体(荧光团)分子标记在两个不同的目标蛋白质上。感兴趣的蛋白质之间的相互作用在适当的刺激下可使荧光素酶和荧光团紧密接近,从而使荧光素酶能够有效地将能量传递至荧光团,从而产生BRET(href =“#bib34” rid =“ bib34” class =“ bibr popnode“> Mandic等人,2014 ,href="#bib10" rid="bib10" class=" bibr popnode"> Ciruela and Fernandez-Duenas,2015 ,href =“#bib33” rid =“ bib33” class =“ bibr popnode”>马赫伊特(Machleidt)等人,2015 ,href="#bib11" rid="bib11" class=" bibr popnode">科里亚诺等等,2016 ,href="#bib22" rid="bib22" class=" bibr popnode"> Goyet et al。,2016 ,href =“#bib2” rid = “ bib2” class =“ bibr popnode”> Alcobia等人,2018 ,href="#bib41" rid="bib41" class=" bibr popnode"> Rathod等人,2018 )。 BRET效率由供体和受体分子相对于彼此的距离和方向决定。考虑到有效BRET的供体-受体分子之间距离间隔(〜10 nm)的严格要求,在生理相关的时间分辨率下,它提供了大的信噪比和高灵敏度,因此在配体-目标相互作用研究中发现了广泛的用途href="#bib33" rid="bib33" class=" bibr popnode">马赫伊特(Machleidt)等人,2015 ,href =“#bib36” rid =“ bib36” class =“ bibr popnode” > Mo和Fu,2016 )。最近,应用BRET成像技术实时观察与N末端NanoLuc(NLuc)标记的人G蛋白偶联受体β2-肾上腺素受体(donor-receptor)结合的心得安-染料偶联物(受体-配体)(href =“#bib2” rid =“ bib2” class =“ bibr popnode”> Alcobia等人,2018 ),证明了BRET成像在监测体内配体-受体结合方面的卓越性能。在本研究中,我们将BRET方法扩展到了具有临床吸引力的mAb疗法。西妥昔单抗(CTX)是目前在许多针对实体瘤的临床试验中部署的治疗性单抗,其相关靶标受体,表皮生长因子受体(EGFR)被选为模型系统。 EGFR是研究最深入的受体之一。介导驱动细胞存活,增殖和生长的关键生长因子反应途径;并且已被卷入(过度表达/突变)许多人类恶性肿瘤中(href="#bib25" rid="bib25" class=" bibr popnode"> Han and Lo,2012 ,href =“# bib51“ rid =” bib51“ class =” bibr popnode“> Seshacharyulu等人,2012 ,href="#bib9" rid="bib9" class=" bibr popnode">塞雷莎和彼得森,2014年,href="#bib54" rid="bib54" class=" bibr popnode">宋等人,2016 ,href =“#bib32” rid =“ bib32”类=“ bibr popnode”> Liu等人,2017 ,href="#bib53" rid="bib53" class=" bibr popnode"> Sigismund等人,2018 )。在本文中,我们提出了一种基于BRET的成像方法,可使用CTX与EGFR结合直接监测活体动物中抗体目标RO的时间特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号