首页> 美国卫生研究院文献>iScience >Tonotopic Differentiation of Coupling between Ca2+ and Kv1.1 Expression in Brainstem Auditory Circuit
【2h】

Tonotopic Differentiation of Coupling between Ca2+ and Kv1.1 Expression in Brainstem Auditory Circuit

机译:Ca2 +和Kv1.1表达在脑干听觉回路中的耦合异位分化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

class="head no_bottom_margin" id="sec1title">IntroductionPrecise temporal coding of sound requires proper adjustment of ion channel expression in auditory neurons (). Two types of voltage-gated K+ (Kv) channels, Kv1.1 and Kv3.1, play central roles in the temporal coding. These channels mediate low- and high-voltage-activated K+ currents, respectively. Kv1.1 is activated strongly at subthreshold potential and improves phasic firing by suppressing aberrant spike generation during synaptic depolarization, whereas Kv3.1 accelerates falling phase of spikes and promotes firing at high frequency (, ).Avian nucleus magnocellularis (NM), a homolog of mammalian anteroventral cochlear nucleus, is involved in the temporal coding (, ) and well known for rich expression of these Kv channels (, , , ). NM neurons are tuned to a specific frequency of sound (characteristic frequency, CF), and arranged tonotopically within the nucleus such that neurons with high CF are located rostromedially (). Moreover, they are differentiated biophysically as well as morphologically along the tonotopic axis (, , , ). One prominent example is the differentiation of Kv1.1; the expression level of this channel increases in neurons with higher CF, which is considered crucial in adjusting neuronal excitability to the CF-specific patterns of afferent input in NM (). Recently, we reported that the differentiation of Kv1.1 was created because afferent input augmented the expression to a larger extent in higher-CF neurons (href="#bib1" rid="bib1" class=" bibr popnode">Akter et al., 2018), showing the importance of afferent input in setting the level of Kv1.1 expression. Intriguingly, however, the auditory threshold is higher for higher-frequency sound (href="#bib15" rid="bib15" class=" bibr popnode">Jones et al., 2006, href="#bib42" rid="bib42" class=" bibr popnode">Saunders et al., 1973), and therefore, the level of afferent input cannot solely explain the graded expression of Kv1.1 toward higher CF, raising a possibility that additional factors may contribute to the differentiation.Thus, we explored the mechanisms of tonotopic differentiation of Kv1.1 in NM, using organotypic culture of chicken brainstem (href="#bib41" rid="bib41" class=" bibr popnode">Sanchez et al., 2011), in which neurons were totally deprived of afferent input. We found that chronic depolarization increased Kv1 current in a level-dependent manner, but the extent was larger at higher-CF regions, causing the tonotopic difference of the current in the culture. The depolarization increased Kv1 current via elevation of [Ca2+]i, whereas it elevated [Ca2+]i similarly irrespective of tonotopic regions. The results showed that the Ca2+-dependent process of Kv1.1 expression was more efficient at higher-CF regions, suggesting the importance of neuronal tonotopic identity as well as pattern of afferent input for the tonotopic differentiation of Kv1.1 in NM.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介声音的精确时间编码需要适当调整听觉神经元中离子通道的表达()。两种电压门控K + (Kv)通道Kv1.1和Kv3.1在时间编码中起着核心作用。这些通道分别介导低压和高压激活的K + 电流。 Kv1.1在亚阈值电位下被强烈激活,并通过抑制突触去极化过程中异常尖峰的产生来改善相位放电,而Kv3.1加速尖峰的下降阶段并促进高频发射(,)。哺乳动物前腹耳蜗核的“α”参与时间编码(“”),并以这些Kv通道(“”,“”)的丰富表达而闻名。将NM神经元调谐到特定的声音频率(特征频率,CF),并在核内局部地无规律地排列,以使具有高CF的神经元位于球状分布。此外,它们沿tonotopic轴(,,,)在生物学上和形态上都有区别。一个突出的例子是Kv1.1的差异。 CF较高的神经元中该通道的表达水平增加,这被认为对于将神经元兴奋性调整为NM中传入输入的CF特定模式至关重要。最近,我们报道了创建Kv1.1的差异是因为传入输入在更高CF的神经元中更大程度地增强了表达(href="#bib1" rid="bib1" class=" bibr popnode"> Akter等人,2018 ),显示传入输入在设置Kv1.1表达水平方面的重要性。然而,有趣的是,高频声音的听觉阈值较高(href="#bib15" rid="bib15" class=" bibr popnode"> Jones等,2006 ,href = “#bib42” rid =“ bib42” class =“ bibr popnode”> Saunders等人,1973 ),因此,传入输入的水平不能完全解释Kv1.1向更高CF的分级表达,因此,我们利用鸡脑干的器官型培养(href =“#bib41” rid =“ bib41” class = “ bibr popnode“> Sanchez等人,2011 ),其中神经元被完全剥夺了传入输入。我们发现慢性去极化以水平依赖的方式增加Kv1电流,但在较高CF区域的程度更大,从而导致培养物中电流的色调差异。去极化通过[Ca 2 + ] i的升高而增加了Kv1电流,而它的[Ca 2 + ] i的升高却类似,而与色调区域无关。结果表明,Ca 2 + 依赖的Kv1.1表达过程在较高CF区更有效,表明神经元同位异位以及同位异位分化输入的重要性NM中的Kv1.1版本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号