class='head no_bottom_margin' id='sec1title'>Int'/> Efficient Hydrogen Peroxide Generation Utilizing Photocatalytic Oxygen Reduction at a Triphase Interface
首页> 美国卫生研究院文献>iScience >Efficient Hydrogen Peroxide Generation Utilizing Photocatalytic Oxygen Reduction at a Triphase Interface
【2h】

Efficient Hydrogen Peroxide Generation Utilizing Photocatalytic Oxygen Reduction at a Triphase Interface

机译:利用三相界面上的光催化氧还原法高效产生过氧化氢

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionHydrogen peroxide (H2O2) is a valuable chemical with rapidly growing demand in a wide variety of industrial areas, including fuel cells, chemical oxidation, environment protection, and paper and textile industries (). The global H2O2 market demand is expected to reach 6,000 kilotons in 2024 (). Currently, industrial processes for H2O2 synthesis involve the multistep anthraquinone oxidation, which requires complex large-scale infrastructure and large amounts of energy. Thus, developing efficient and cost-effective alternative routes for H2O2 generation is of ongoing importance (, , , , ).The photocatalytic reduction of oxygen to H2O2 has received great attention as it requires only light, water, and O2 (, , , , , , , , href="#bib25" rid="bib25" class=" bibr popnode">Shiraishi et al., 2014, href="#bib27" rid="bib27" class=" bibr popnode">Sorcar et al., 2018, href="#bib30" rid="bib30" class=" bibr popnode">Teranishi et al., 2010, href="#bib31" rid="bib31" class=" bibr popnode">Teranishi et al., 2016, href="#bib32" rid="bib32" class=" bibr popnode">Wang et al., 2015). During the reaction photogenerated conduction band (CB) electrons reduce O2 to produce H2O2; O2 + 2eCB + 2H+aq→ H2O2 [(O2/H2O2) = 0.695 V versus normal hydrogen electrode (NHE)]. However, to date resultant product concentrations have been quite limited. The low production rate can be ascribed to the following aspects, which may not be strictly independent of one another: first, the low concentration and slow diffusion rate of O2 in liquid phase results in deficient accessibility of the photocatalysts to reactant; second, the recombination of electrons and holes limits the electron utilization efficiency, and such limitation becomes more serious in the presence of higher charge carrier concentrations associated with greater light intensities; third, the degradation of H2O2 by photogenerated charge carriers also reduces the product yield.The performance of interfacial catalytic reactions is generally governed by the interface environment. Herein, we simultaneously address these limitations by demonstrating a reaction system possessing an air-liquid-solid triphase reaction interface as illustrated in href="/pmc/articles/PMC6606954/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1A, where the nanostructured semiconductors are deposited on the top surface of a porous superhydrophobic substrate. Learning from nature, based on the cooperative effect between the low surface energy and rough surface structure, superhydrophobic substrates have been fabricated and used in a wide variety of fields (href="#bib1" rid="bib1" class=" bibr popnode">Aebisher et al., 2013, href="#bib6" rid="bib6" class=" bibr popnode">Deng et al., 2012, href="#bib9" rid="bib9" class=" bibr popnode">Feng et al., 2002, href="#bib8" rid="bib8" class=" bibr popnode">Feng and Jiang, 2006, href="#bib11" rid="bib11" class=" bibr popnode">Hong et al., 2007, href="#bib18" rid="bib18" class=" bibr popnode">Lafuma and Quéré, 2003, href="#bib19" rid="bib19" class=" bibr popnode">Lei et al., 2016, href="#bib29" rid="bib29" class=" bibr popnode">Su et al., 2016, href="#bib33" rid="bib33" class=" bibr popnode">Wooh et al., 2017, href="#bib34" rid="bib34" class=" bibr popnode">Wu et al., 2014, href="#bib35" rid="bib35" class=" bibr popnode">Yohe et al., 2012). When immersed in water the superhydrophobic substrate traps air within atmosphere-linked air pockets, resulting in an interface where solid, liquid, and air three phases coexist (href="#bib9" rid="bib9" class=" bibr popnode">Feng et al., 2002, href="#bib18" rid="bib18" class=" bibr popnode">Lafuma and Quéré, 2003). The triphase system allows reactant O2 to diffuse directly from the air phase to the reaction interface, rather than by slow diffusion through the liquid. Benefiting from this interface architecture the accessibility of the photocatalyst to O2 is greatly increased, which in turn (1) enhances the reaction rate between O2 and photogenerated electrons, (2) suppresses the electron-hole recombination and increases the charge utilization efficiency, and (3) reduces the degradation reaction between H2O2 and photogenerated electrons, thus leading to much enhanced rates of H2O2 production.href="/pmc/articles/PMC6606954/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6606954_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6606954/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6606954/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Schematic Illustration of the Triphase Photocatalytic Reaction System(A) Photocatalysts are immobilized on the porous superhydrophobic substrate.(B) Enlarged view of the solid-liquid-air triphase reaction zone. Reactant O2 is rapidly delivered from the air to the reaction interface resulting in a significantly enhanced rate of H2O2 production.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介过氧化氢(H2O2)是一种有价值的化学品,在各种各样的产品中需求迅速增长工业领域,包括燃料电池,化学氧化,环境保护以及造纸和纺织工业()。预计2024年全球H2O2市场需求将达到6,000吨()。当前,H 2 O 2合成的工业过程涉及多步蒽醌氧化,这需要复杂的大规模基础设施和大量的能量。因此,开发有效且具有成本效益的H2O2替代路线具有持续的重要性(,,,,)。光催化还原氧气为H2O2已受到广泛关注,因为它仅需光,水和O2(,,,, ,,,href="#bib25" rid="bib25" class=" bibr popnode"> Shiraishi等人,2014 ,href =“#bib27” rid =“ bib27” class = “ bibr popnode”> Sorcar等,2018 ,href="#bib30" rid="bib30" class=" bibr popnode"> Teranishi等,2010 ,href =“#bib31” rid =“ bib31” class =“ bibr popnode”> Teranishi等人,2016 ,href="#bib32" rid="bib32" class=" bibr popnode">王等等,2015年)。在反应过程中,光生导带(CB)电子将O2还原为H2O2。 O2 + 2e CB + 2H + aq →H 2 O 2 [ (O 2 / H 2 O 2 )相对于普通氢电极(NHE)= 0.695V]。然而,迄今为止,所得产物的浓度非常有限。较低的生产率可以归因于以下几个方面,这可能不是彼此严格独立的:首先,液相中O 2 的低浓度和缓慢扩散速率会导致O 2 的可及性不足。反应物的光催化剂;其次,电子和空穴的复合限制了电子的利用效率,并且在存在更高的载流子浓度和更高的光强度的情况下,这种限制变得更加严重。第三,光生载流子降解H 2 O 2 也降低了产物收率。界面催化反应的性能通常受界面环境的控制。在此,我们同时通过展示具有href =“ / pmc / articles / PMC6606954 / figure / fig1 /” target =“ figure” class =“图1 A,其中纳米结构的半导体沉积在顶部多孔超疏水基材的表面。从自然中吸取教训,基于低表面能和粗糙表面结构之间的协同作用,超疏水性基材已被制造出来并用于各种领域(href =“#bib1” rid =“ bib1” class =“ bibr popnode“> Aebisher等人,2013 ,href="#bib6" rid="bib6" class=" bibr popnode">邓等人,2012 ,href =” #bib9“ rid =” bib9“ class =” bibr popnode“> Feng等,2002 ,href="#bib8" rid="bib8" class=" bibr popnode"> Feng和Jiang, 2006 ,href="#bib11" rid="bib11" class=" bibr popnode"> Hong等人,2007 ,href =“#bib18” rid =“ bib18” class =“ bibr popnode”> Lafuma andQuéré,2003 ,href="#bib19" rid="bib19" class=" bibr popnode"> Lei等人,2016 ,href =“#bib29” rid =“ bib29” class =“ bibr popnode”> Su等人,2016 ,href="#bib33" rid="bib33" class=" bibr popnode">哇等,2017 ,href="#bib34" rid="bib34" class=" bibr popnode">吴等,2014 ,href =“#bib35”摆脱=“ bib35” class =“ bibr popnode”> Yohe等l。,2012 )。当将超疏水性基材浸入水中时,会将空气捕获在与大气相关的气穴中,从而形成一个界面,固体,液体和空气三相共存(href =“#bib9” rid =“ bib9” class =“ bibr popnode” > Feng等人,2002 ,href="#bib18" rid="bib18" class=" bibr popnode"> Lafuma andQuéré,2003 。三相系统允许反应物O 2 从气相直接扩散到反应界面,而不是通过液体缓慢扩散。得益于这种界面架构,光催化剂对O 2 的可及性大大提高,这反过来又(1)增强了O 2 与光生电子之间的反应速率,(2 )抑制电子-空穴复合并提高电荷利用效率,(3)减少H 2 O 2 与光生电子之间的降解反应,因此导致H 2 O 2 的生产率大大提高。<!-fig ft0-> <!-fig mode = f1-> < a href =“ / pmc / articles / PMC6606954 / figure / fig1 /” target =“ figure” rid-figpopup =“ fig1” rid-ob =“ ob-fig1”> <!-fig / graphic | fig / alternatives /图形模式=“ anchored” m1-> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title = Click%20on%20image%20to%20zoom&p = PMC3&id = 6606954_gr1.jpg“ target =” tileshopwindow“> target="object" href="/pmc/articles/PMC6606954/figure/fig1/?report=objectonly">在单独的窗口中打开 class="figpopup" href="/pmc/articles/PMC6606954/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">图1 <!-标题a7->三相光催化反应系统的示意图(A)将光催化剂固定在多孔的超疏水基质上。(B)固-液-气三相反应区的放大图。 O 2 反应物从空气迅速传递到反应界面,导致H 2 O 2 的产生速率大大提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号