首页> 美国卫生研究院文献>iScience >MOV10L1 Binds RNA G-Quadruplex in a Structure-Specific Manner and Resolves It More Efficiently Than MOV10
【2h】

MOV10L1 Binds RNA G-Quadruplex in a Structure-Specific Manner and Resolves It More Efficiently Than MOV10

机译:MOV10L1以特定于结构的方式绑定RNA G四联体并且比MOV10更有效地解析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionRNA helicases are ubiquitous motor enzymes that participate in nearly all aspects of RNA metabolism (, ). Despite their importance, only a few eukaryotic RNA helicases have been functionally and kinetically characterized in vitro (). The mammalian paralogs Moloney leukemia virus 10 (MOV10) and MOV10-like 1 (MOV10L1) are RNA helicases belonging to superfamily 1 (SF1), and they exhibit 5′ to 3′ RNA helicase activity in unwinding RNA duplex in vitro (, ). MOV10 is expressed in multiple tissues, and its diverse functions, such as retroelement inhibition and mRNA modulation, have been widely reported (, , ). On the other hand, MOV10L1 is a testis-specific RNA helicase with a critical function restricted to male reproduction (, , ). The MOV10L1 helicase has been demonstrated to associate with PIWI proteins and control PIWI-interacting RNA (piRNA) biogenesis for retrotransposon silencing and protect the genome integrity of post-meiotic germ cells (, ). Its point mutations K778A in the ATP-binding motif and DE888AA in the ATP hydrolysis motif cause loss of function of MOV10L1 in piRNA biogenesis and male fertility (, ). However, the molecular mechanisms and functions of MOV10L1 in piRNA biogenesis are still obscure, although studies on mammalian piRNAs have provided a framework as to how piRNAs are generated (href="#bib21" rid="bib21" class=" bibr popnode">Fu and Wang, 2014, href="#bib29" rid="bib29" class=" bibr popnode">Hirakata and Siomi, 2016, href="#bib33" rid="bib33" class=" bibr popnode">Ku and Lin, 2014, href="#bib64" rid="bib64" class=" bibr popnode">Weick and Miska, 2014). Primary precursor transcripts require at least two critical steps to generate piRNAs. A first step with endonucleolytic cleavages on the primary piRNA precursor generates piRNA precursor intermediate fragments (PPIFs), which are loaded onto PIWI proteins that stabilize their 5′ ends (href="#bib63" rid="bib63" class=" bibr popnode">Vourekas et al., 2012, href="#bib62" rid="bib62" class=" bibr popnode">Vourekas et al., 2015). This is followed by a second step with 3′ to 5′ exonucleolytic trimming by PNLDC1 (href="#bib15" rid="bib15" class=" bibr popnode">Ding et al., 2017, href="#bib45" rid="bib45" class=" bibr popnode">Nishida et al., 2018, href="#bib65" rid="bib65" class=" bibr popnode">Zhang et al., 2017). Although MOV10L1 was proposed to mediate the initial step in piRNA processing when it binds the primary precursor transcripts to facilitate their endonucleolytic cleavage (href="#bib62" rid="bib62" class=" bibr popnode">Vourekas et al., 2015), a deepened mechanistic understanding of its molecular function as a helicase is crucial in piRNA biogenesis.An intriguing feature shared by MOV10 and MOV10L1 from cross-linking and immunoprecipitation (CLIP)-seq analyses is that its preferable binding sequences harbor clusters of guanine (G) residues (href="#bib32" rid="bib32" class=" bibr popnode">Kenny et al., 2014, href="#bib62" rid="bib62" class=" bibr popnode">Vourekas et al., 2015). Their difference lies in the fact that MOV10L1-bound piRNA precursor transcripts that originate from genomic piRNA clusters are more enriched in G resides compared with those from other areas like MOV10-bound mRNAs (href="#bib62" rid="bib62" class=" bibr popnode">Vourekas et al., 2015). It has been long known that G-rich sequences in DNA and RNA have a propensity to fold into stable secondary structures termed G-quadruplexes (G4s), which are based on the stacking of several G-quartets with each layer consisting of four guanine bases held together by Hoogsteen-type hydrogen bonding (href="#bib4" rid="bib4" class=" bibr popnode">Bochman et al., 2012, href="#bib44" rid="bib44" class=" bibr popnode">Millevoi et al., 2012). Increasing evidence indicates that intramolecular RNA G-quadruplex (RG4) motifs are biologically relevant structures, and their occurrence can play vital roles in many key cellular functions, including telomere homeostasis, gene expression, and pre-mRNA processing (href="#bib1" rid="bib1" class=" bibr popnode">Agarwala et al., 2015, href="#bib8" rid="bib8" class=" bibr popnode">Bugaut and Balasubramanian, 2012, href="#bib9" rid="bib9" class=" bibr popnode">Cammas and Millevoi, 2017, href="#bib17" rid="bib17" class=" bibr popnode">Fay et al., 2017, href="#bib44" rid="bib44" class=" bibr popnode">Millevoi et al., 2012, href="#bib49" rid="bib49" class=" bibr popnode">Rhodes and Lipps, 2015, href="#bib53" rid="bib53" class=" bibr popnode">Simone et al., 2015). Even though several helicases and nucleases have been shown to remove DNA G-quadruplex (DG4) structure and regulate cellular processes (href="#bib3" rid="bib3" class=" bibr popnode">Baran et al., 1997, href="#bib12" rid="bib12" class=" bibr popnode">Chen et al., 2018, href="#bib28" rid="bib28" class=" bibr popnode">Harrington et al., 1997, href="#bib43" rid="bib43" class=" bibr popnode">Mendoza et al., 2016, href="#bib52" rid="bib52" class=" bibr popnode">Sauer and Paeschke, 2017, href="#bib58" rid="bib58" class=" bibr popnode">Sun et al., 1998, href="#bib57" rid="bib57" class=" bibr popnode">Sun et al., 1999), only a few RNA helicases, so far, have been reported to be capable of unwinding RG4 structures in vitro (href="#bib6" rid="bib6" class=" bibr popnode">Booy et al., 2012, href="#bib11" rid="bib11" class=" bibr popnode">Chakraborty and Grosse, 2011, href="#bib14" rid="bib14" class=" bibr popnode">Creacy et al., 2008, href="#bib23" rid="bib23" class=" bibr popnode">Gao et al., 2019, href="#bib42" rid="bib42" class=" bibr popnode">McRae et al., 2017, href="#bib50" rid="bib50" class=" bibr popnode">Ribeiro de Almeida et al., 2018). One of the reasons is that RG4 is a thermodynamically stable structure compared with other forms of RNA, thereby in requirement of specialized RNA helicase to resolve it (href="#bib27" rid="bib27" class=" bibr popnode">Hardin et al., 2000). The abundance of RG4s located within piRNA precursor along with an intimate coupling of piRNA precursor processing with RG4 raises the possibility that RG4 may exist as a structural mediator for the endonucleolytic cleavage of piRNA precursors, and MOV10L1 may take responsibility for resolving RG4 to facilitate the cleavage. However, whether and how the MOV10L1 helicase resolves the bona fide RG4 structures is unknown. In addition, in the unified model of PIWI-guided phased piRNA biogenesis, a question also remains how such a phasing process gets smoothly through a primary piRNA precursor bearing multiple RG4 obstacles (href="#bib22" rid="bib22" class=" bibr popnode">Gainetdinov et al., 2018, href="#bib61" rid="bib61" class=" bibr popnode">Vourekas and Mourelatos, 2018).In this study, we employed robust biochemical assays to test the capability of MOV10L1 and MOV10 in binding and unwinding of RG4 structure in vitro. We found that even though both of them can unwind RG4, there are a few striking differences between them. MOV10L1 could take advantage of its unique features in RG4 binding and unwinding to mediate piRNA biogenesis. Last, a proof-of-concept assay with MOV10L1 and an endonuclease supports a model that they might cooperatively unwind and cleave RG4 structures in the initial step of piRNA biogenesis.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介 RNA解旋酶是无所不在的运动酶,几乎参与了RNA代谢的所有方面(,) 。尽管它们很重要,但在体外()中只有少数真核RNA解旋酶具有功能和动力学特征。哺乳动物副产物莫洛尼氏白血病病毒10(MOV10)和MOV10样1(MOV10L1)是属于超家族1(SF1)的RNA解旋酶,它们在体外解开RNA双链体中表现出5'至3'RNA解旋酶活性。 MOV10在多种组织中表达,其多种功能,例如逆转录因子抑制和mRNA调控,已被广泛报道(,,)。另一方面,MOV10L1是一种睾丸特异性RNA解旋酶,其关键功能仅限于雄性生殖(“”,“”)。已证明MOV10L1解旋酶可与PIWI蛋白缔合并控制PIWI相互作用RNA(piRNA)的生物发生,以实现逆转座子沉默并保护减数分裂后生殖细胞的基因组完整性。其ATP结合基序中的点突变K778A和ATP水解基序中的DE888AA导致piRNA生物发生和雄性育性中MOV10L1的功能丧失(,)。然而,尽管对哺乳动物piRNA的研究为piRNA的产生提供了框架(href =“#bib21” rid =“ bib21” class =“ bibr popnode),但仍不清楚MOV10L1在piRNA生物发生中的分子机制和功能。 “> Fu和Wang,2014 ,href="#bib29" rid="bib29" class=" bibr popnode">枚方和西奥米,2016 ,href =”#bib33“ rid =“ bib33” class =“ bibr popnode”> Ku和Lin,2014 ,href="#bib64" rid="bib64" class=" bibr popnode"> Weick和Miska,2014 )。初级前体转录物需要至少两个关键步骤才能生成piRNA。在主要piRNA前体上进行内切核酸酶裂解的第一步是生成piRNA前体中间片段(PPIF),将其加载到稳定其5'末端的PIWI蛋白上(href =“#bib63” rid =“ bib63” class =“ bibr popnode“> Vourekas等,2012 ,href="#bib62" rid="bib62" class=" bibr popnode"> Vourekas等,2015 )。第二步是通过PNLDC1进行3'至5'的核酸外切修饰(href="#bib15" rid="bib15" class=" bibr popnode"> Ding等人,2017 ,< a href =“#bib45” rid =“ bib45” class =“ bibr popnode”>西田等人,2018 ,href="#bib65" rid="bib65" class=" bibr popnode"> Zhang et al。,2017 )。虽然有人提出MOV10L1在与主要前体转录物结合以促进其内切核酸裂解时介导piRNA加工的初始步骤(href="#bib62" rid="bib62" class=" bibr popnode"> Vourekas等, 2015 ),深入了解其作为解旋酶分子功能的机理对于piRNA生物发生至关重要。MOV10和MOV10L1的交联和免疫沉淀(CLIP)-seq分析的一个有趣特征是其优选的结合序列鸟嘌呤(G)残留物的港口簇(href="#bib32" rid="bib32" class=" bibr popnode">肯尼等人,2014 ,href =“#bib62” rid = “ bib62” class =“ bibr popnode”> Vourekas等人,2015 )。它们之间的差异在于,与其他区域(例如,MOV10结合的mRNA)相比,源自基因组piRNA簇的MOV10L1结合的piRNA前体转录物在G驻地中的含量更高( class =“ bibr popnode”> Vourekas等人,2015 )。众所周知,DNA和RNA中富含G的序列倾向于折叠成称为G-四链体(G4s)的稳定二级结构,这种结构基于几个G四联体的堆叠,每层由四个鸟嘌呤碱基组成通过Hoogsteen型氢键结合在一起(href="#bib4" rid="bib4" class=" bibr popnode"> Bochman et al。,2012 ,href =“#bib44” rid = “ bib44” class =“ bibr popnode”> Millevoi等人,2012 )。越来越多的证据表明,分子内RNA G四联体(RG4)基序是生物学相关的结构,它们的出现在许多关键细胞功能中起着至关重要的作用,包括端粒稳态,基因表达和mRNA加工前(href =“# bib1“ rid =” bib1“ class =” bibr popnode“>阿加瓦拉等人,2015 ,href="#bib8" rid="bib8" class=" bibr popnode">布加特和巴拉伯拉曼人,2012年,href="#bib9" rid="bib9" class=" bibr popnode"> Cammas和Millevoi,2017年,href =“#bib17” rid =“ bib17” class = “ bibr popnode”> Fay等人,2017 ,href="#bib44" rid="bib44" class=" bibr popnode"> Millevoi等人,2012 ,href =“#bib49” rid =“ bib49” class =“ bibr popnode”> Rhodes and Lipps,2015年,href="#bib53" rid="bib53" class=" bibr popnode">西蒙等人,2015 )。即使已显示几种解旋酶和核酸酶可去除DNA G四联体(DG4)结构并调节细胞过程(href="#bib3" rid="bib3" class=" bibr popnode"> Baran等,1997 ,href="#bib12" rid="bib12" class=" bibr popnode"> Chen et al。,2018 ,href =“#bib28” rid =“ bib28”类=“ bibr popnode”> Harrington等,1997 ,href="#bib43" rid="bib43" class=" bibr popnode"> Mendoza等,2016 ,href =“#bib52” rid =“ bib52” class =“ bibr popnode”>绍尔和帕斯凯克,2017 ,href="#bib58" rid="bib58" class=" bibr popnode">太阳等等,1998 ,href="#bib57" rid="bib57" class=" bibr popnode"> Sun等人,1999 ),到目前为止,只有少数几种RNA解旋酶据报道能够在体外展开RG4结构(href="#bib6" rid="bib6" class=" bibr popnode"> Booy等人,2012 ,href =“# bib11“ rid =” bib11“ class =” bibr popnode“> Chakraborty and Grosse,2011 ,href="#bib14" rid="bib14" class=" bibr popnode"> Creacy等人,2008年,href="#bib23" rid="bib23" class=" bibr popnode">高等人,2019 ,href =“#bib42” rid =“ bib42”类=“ bibr popnode”> McRae等人,2017 ,href="#bib50" rid="bib50" class=" bibr popnode">里贝罗·阿尔梅达等人,2018 ) 。原因之一是,与其他形式的RNA相比,RG4是热力学稳定的结构,因此需要专门的RNA解旋酶来解析它(href="#bib27" rid="bib27" class=" bibr popnode"> Hardin等,2000 )。位于piRNA前体中的大量RG4以及piRNA前体加工与RG4的紧密偶联增加了RG4可能作为piRNA前体的内切核酸裂解的结构介质而存在的可能性,而MOV10L1可能负责解析RG4以促进裂解。但是,MOV10L1解旋酶是否以及如何解析真正的RG4结构尚不清楚。此外,在PIWI指导的阶段性piRNA生物发生的统一模型中,还存在一个问题,即如何通过带有多个RG4障碍的主要piRNA前体平稳地进行这种定相过程(href =“#bib22” rid =“ bib22”类=“ bibr popnode”> Gainetdinov等人,2018 ,href="#bib61" rid="bib61" class=" bibr popnode"> Vourekas和Mourelatos,2018 )。在这项研究中,我们采用了强大的生化分析方法来测试MOV10L1和MOV10在体外结合和解开RG4结构的能力。我们发现,尽管他们俩都可以放松RG4,但它们之间还是有一些惊人的区别。 MOV10L1可以利用其在RG4结合和展开中的独特功能来介导piRNA生物发生。最后,用MOV10L1和内切核酸酶进行的概念验证试验支持了一种模型,即它们可能在piRNA生物发生的初始步骤中协同展开和切割RG4结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号