首页> 美国卫生研究院文献>iScience >Digitalized Human Organoid for Wireless Phenotyping
【2h】

Digitalized Human Organoid for Wireless Phenotyping

机译:用于无线表型的数字化人类类器官

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

class="head no_bottom_margin" id="sec1title">IntroductionRadio frequency identification (RFID) is a cost-effective technology for addressing personal identification, traceability, and environmental considerations, especially in transportation industries, which has permeated all facets of modern life (, , ). RFID tags, operating wirelessly, collect energy from a nearby reader's interrogating radio waves. The high degree of tolerance to tested solutions, solvents, extreme temperatures, and high- or low-pressure conditions () provides the RFID tags with significant advantages over barcodes. The tags are now integrated into cards, clothing, and possessions, as well as implanted into animals and humans. For example, RFID tags are incorporated into cards and are used to pay for mass transit fares on buses, trains, and subways and to collect tolls on highways in many countries. In 2017, the world RFID market, which includes tags, readers, software/services for RFID cards, labels, fobs, and all other form factors, was worth US$11.2 billion and has an estimated 10% annual growth, resulting in an anticipated value of US$18.68 billion by 2026 ().In recent years, there has been considerable interest in extending the usage of RFID to the healthcare arena. For example, implanting RFID microchips in animals and humans allows for positive identification of specific individuals. Medical application of RFID now includes an oral “digital pill” for chronic conditions, in efforts to improve patients' adherence (, ). The ingested radiofrequency emitter, once activated by gastric pH, emits a radiofrequency signal, which is captured by a relay hub and transmitted to a smartphone, where it provides ingestion data and deliver interventions in real time. Thus, the diverse applications of RFID provide innovative solutions to various biomedical challenges. Similarly, RFID incorporation into cells or tissues can provide advancements in tracking in vitro and in vivo processes, in drug discovery, and in understanding disease mechanisms. Recent applications of micro RFID showed the passive intra-cellular delivery and short-term persistence; however, the use of mouse phagocytic cell line and melanoma cell line limit its broader application (). Thus, realistic RFID applications in the tissue culture context necessitates viable methods to incorporate the microchip into biological tissue without impairing the tissue's native structure and functions.Recently, human organoids have received international attention as an in vitro culture system where human stem cells self-organize into three-dimensional (3D) structures reminiscent of human organs (, , ). Organoids, owing to their higher phenotypic fidelity to human disease (), are expected to provide a mechanistic assay platform with future potential for drug screening and personalized medicine (, , ). It becomes feasible to study human pathological variations by comparing genotypes with phenotype spectrum diseases, including cystic fibrosis (href="#bib19" rid="bib19" class=" bibr popnode">Saini, 2016), steatohepatitis (Takanori Takebe et al., Unpublished), and cholestatic disease (Takanori Takebe et al., Unpublished), using a human induced pluripotent stem cell (iPSC) or adult stem cell library. One key feature of organoids is the development of a polarized structure surrounded by basement membrane through a self-assembly process, resulting in a cavitated structure from an aggregated tissue. Therefore, we hypothesized that aggregation-mediated self-assembling process will enable the successful internalization of miniature chips into biological tissues without compromising the native functions of the tissues.Herein, we test this hypothesis by integrating ultracompact RFID chips into re-aggregated iPSC-derived endoderm spheroids before self-assembly. Recent advancements in miniaturization have generated ultra-compact RFID microchips ranging in size from 10 to 600 μm (href="#bib2" rid="bib2" class=" bibr popnode">Burke and Rutherglen, 2010, href="#bib4" rid="bib4" class=" bibr popnode">Chai et al., 2016, href="#bib5" rid="bib5" class=" bibr popnode">Chen et al., 2013). For simplicity and accessibility, we used commercially available organoid-scale RFID chips, herein defined as the O-Chip. The concept of organoid digitalization with O-Chip is shown in href="/pmc/articles/PMC6147234/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1A. Each O-Chip is 460 × 480 μm and has a 512 bit memory area (href="/pmc/articles/PMC6147234/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1B). By applying a specific wavelength into a coiled antenna, each O-Chip receives data sent from the reader/writer, and with energy driven by this electric current the O-Chip wirelessly sends information stored in its memory. The O-Chip operates wirelessly from readers across distances of up to about 1–2 mm.href="/pmc/articles/PMC6147234/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6147234_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6147234/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6147234/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Concept of Organoid Digitalization with O-Chip(A) A schematic of organoid digitalization strategy. Integration of O-Chip into organoids makes it possible to digitalize organoids.(B) The size of the O-Chip: 0.46 ×0.48 μm2.(C) Self-condensation culture with O-Chip (href="#bib21" rid="bib21" class=" bibr popnode">Takebe et al., 2015). Serial pictures show that O-Chips are being integrated into organoids formed from iPSC derivatives.(D) RiO morphology. Each organoid completely encompasses one RFID microchip. Scale bars for RiO, 200 μm; for zoomed-in images, 100 μm.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介射频识别(RFID)是一种经济有效的技术,用于解决个人识别,可追溯性以及环境方面的考虑,尤其是在交通运输行业中,这些方面已经渗透到现代生活的各个方面(,,)。无线操作的RFID标签从附近阅读器的询问无线电波中收集能量。对测试溶液,溶剂,极端温度以及高压或低压条件()的高度耐受性使RFID标签比条形码具有明显的优势。现在,这些标签已集成到卡片,衣服和物品中,并已植入动物和人类中。例如,在许多国家,RFID标签被集成到卡中,用于支付公共汽车,火车和地铁上的大众运输票价,并收取高速公路上的通行费。 2017年,全球RFID市场(包括标签,读取器,RFID卡的软件/服务,标签,表链和所有其他形状因素)价值112亿美元,并以每年10%的速度增长,产生了预期的价值到2026年,这一数字将达到186.8亿美元。近年来,人们对将RFID的使用范围扩展到医疗保健领域的兴趣很大。例如,在动物和人类中植入RFID微芯片可以肯定地识别特定的个体。 RFID的医学应用现在包括针对慢性病的口服“数字药丸”,以努力改善患者的依从性(,)。摄入的射频发射器一旦被胃液pH激活,就会发出射频信号,该信号由中继集线器捕获并传输到智能手机,在智能手机中,它可以提供摄入数据并实时进行干预。因此,RFID的各种应用为各种生物医学挑战提供了创新的解决方案。同样,将RFID整合到细胞或组织中可以在跟踪体内和体外过程,发现药物以及了解疾病机理方面提供进步。微型RFID的最新应用显示了被动的细胞内传递和短期持久性。但是,小鼠吞噬细胞系和黑色素瘤细胞系的使用限制了其更广泛的应用。因此,现实的RFID在组织培养环境中的应用需要一种可行的方法来将微芯片整合到生物组织中,而不会损害组织的天然结构和功能。近来,作为体外培养系统的人类类器官已在国际上引起关注,在该系统中,人类干细胞可以自我组织变成让人联想到人体器官的三维(3D)结构(,,)。由于类固醇对人类疾病具有更高的表型保真度,因此有望为机械化检测平台提供药物筛选和个性化药物的未来潜力。通过比较基因型与表型谱疾病,包括囊性纤维化(href="#bib19" rid="bib19" class=" bibr popnode"> Saini,2016 ),脂肪性肝炎,研究人类病理变异变得可行。 (Takanori Takebe等,未发表)和胆汁淤积性疾病(Takanori Takebe等,未发表),使用人类诱导的多能干细胞(iPSC)或成年干细胞文库。类器官的一个关键特征是通过自组装过程形成了被基底膜包围的极化结构,从而导致聚集组织形成空化结构。因此,我们假设聚集介导的自组装过程将使微型芯片成功内化到生物组织中,而不会损害组织的天然功能。在这里,我们通过将超紧凑RFID芯片整合到重新聚集的iPSC衍生品中来检验这一假设。自组装前的内胚层球体。微型化的最新进展已经产生了尺寸从10到600μm的超紧凑型RFID微芯片(href="#bib2" rid="bib2" class=" bibr popnode"> Burke and Rutherglen,2010 , href="#bib4" rid="bib4" class=" bibr popnode">柴等人,2016 ,href =“#bib5” rid =“ bib5” class =“ bibr popnode” > Chen et al。,2013 )。为了简便起见,我们使用了市售的类器官规模RFID芯片,在此定义为O-Chip。在href =“ / pmc / articles / PMC6147234 / figure / fig1 /” target =“ figure” class =“ fig-table-link figpopup” rid-figpopup =“ fig1中显示了使用O-Chip进行类器官数字化的概念“ rid-ob =” ob-fig1“ co-legend-rid =” lgnd_fig1“>图1 A。每个O芯片的尺寸为460×480μm,并具有5​​12位内存区域(href =“ / pmc / articles / PMC6147234 / figure / fig1 /” target =“ figure” class =“ fig-table-link figpopup” rid -figpopup =“ fig1” rid-ob =“ ob-fig1” co-legend-rid =“ lgnd_fig1”>图1 B)。通过在线圈天线中施加特定的波长,每个O-Chip都会接收从读取器/写入器发送的数据,并利用此电流驱动的能量,将O-Chip无线发送存储在其内存中的信息。 O-Chip可通过阅读器以无线方式运行,跨距最大约为1-2毫米。<!-fig ft0-> <!-fig mode = article f1-> href =“ / pmc / articles / PMC6147234 / figure / fig1 /“ target =” figure“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“> <!-fig / graphic | fig / alternatives / graphic mode =” anchored“ m1-- > class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title = Click%20on%20image%20to%20zoom&p = PMC3&id = 6147234_gr1.jpg” target =“ tileshopwindow” > target="object" href="/pmc/articles/PMC6147234/figure/fig1/?report=objectonly">在单独的窗口中打开 class =“ figpopup“ href =” / pmc / articles / PMC6147234 / figure / fig1 /“ target =” figure“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“>图1 <!-标题a7->使用O-Chip进行类器官数字化的概念(A)类器官数字化策略的示意图。将O-Chip集成到类器官中可以数字化类器官。(B)O-Chip的大小:0.46×0.48μm 2 。(C)使用O-Chip自凝结培养( href="#bib21" rid="bib21" class=" bibr popnode"> Takebe等人,2015 )。连续图片显示O-Chip已整合到由iPSC衍生物形成的类器官中。(D)RiO形态。每个类器官都完全包含一个RFID微芯片。 RiO的比例尺为200μm;用于放大图像,100μm。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号