class='head no_bottom_margin' id='sec1title'>Int'/> Controllable Multinary Alloy Electrodeposition for Thin-Film Solar Cell Fabrication: A Case Study of Kesterite Cu2ZnSnS4
首页> 美国卫生研究院文献>iScience >Controllable Multinary Alloy Electrodeposition for Thin-Film Solar Cell Fabrication: A Case Study of Kesterite Cu2ZnSnS4
【2h】

Controllable Multinary Alloy Electrodeposition for Thin-Film Solar Cell Fabrication: A Case Study of Kesterite Cu2ZnSnS4

机译:用于薄膜太阳能电池制造的可控多元合金电沉积:以Kesterite Cu2ZnSnS4为例

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionElectrodeposition (ED) is a non-vacuum and commercial technology with the demonstrated capability of depositing functional coatings on the base materials by using electric current to reduce dissolved salts in electrolyte baths. The feasibility of ED has been evaluated for the majority of the elements in the periodic table, including conventional metal elements (e.g., Cu, Zn, Sn, Au, Pt), alkaline earth metal elements (e.g., Mg [], Sr [], Eu []), transition group metal elements (e.g., Nb [], Ta [], Bi []), and non-metal elements (e.g., Se [], Te []). Based on these elements, a variety of multifunctional coatings can be electrodeposited for applications of finishing, microelectronics, nanobiosystems, solar cell productions, etc. (; , ). In particular, ED has met with success in preparing a wide range of photoelectrochemical and photovoltaic solar absorber films, including Sb2Se3 (), CdTe (), Cu2O (), CuSbS2 (, href="#bib67" rid="bib67" class=" bibr popnode">Septina et al., 2014), Cu(In, Ga)Se2 (CIGS) (href="#bib20" rid="bib20" class=" bibr popnode">Duchatelet et al., 2013, href="#bib52" rid="bib52" class=" bibr popnode">Lincot et al., 2004), Cu2ZnSnS(e)4 [CZTS(e)] (href="#bib15" rid="bib15" class=" bibr popnode">Colombara et al., 2015, href="#bib58" rid="bib58" class=" bibr popnode">Peter, 2015), and CH3NH3PbI3 (href="#bib13" rid="bib13" class=" bibr popnode">Chen et al., 2015, href="#bib41" rid="bib41" class=" bibr popnode">Huang et al., 2015). Aside from the absorbers, functional ZnO window layers (href="#bib73" rid="bib73" class=" bibr popnode">Tsin et al., 2015, href="#bib74" rid="bib74" class=" bibr popnode">Tsin et al., 2016a), Zn-based finger grids (href="#bib75" rid="bib75" class=" bibr popnode">Tsin et al., 2016b), and CuSCN (href="#bib80" rid="bib80" class=" bibr popnode">Ye et al., 2015) charge transport layers in the thin-film solar cells can be as well prepared by ED. Besides, ED has already demonstrated great success in the roll-to-roll CIGS solar panel manufacture, which is based on the precursor type of an electrodeposited Cu-In-Ga alloy covered by an electrodeposited In-Se or Ga-Se single layer (href="#bib2" rid="bib2" class=" bibr popnode">Aksu et al., 2012, href="#bib7" rid="bib7" class=" bibr popnode">Başol et al., 2009).Kesterite CZTS(e) solar cells have attracted increasing attention in the past decade because of their non-toxicity and earth-abundant nature. ED emerging as a technoeconomic and large-scale deposition technology has been widely employed to fabricate the kesterite absorber precursors. Post-chalcogenization of the ED precursors is additionally needed to form the final kesterites. Promisingly, high-performance (7–9%) CZTS(e) solar cell devices have been frequently reported based on this two-stage approach (href="#bib38" rid="bib38" class=" bibr popnode">Guo et al., 2014, href="#bib43" rid="bib43" class=" bibr popnode">Jeon et al., 2014, href="#bib77" rid="bib77" class=" bibr popnode">Vauche et al., 2016). Specifically, electrodeposited precursors can be classified into two types: stack layers (i.e., Cu/Sn/Zn) and alloy layers (i.e., Cu-Zn-Sn), both of which have successfully attained the highly efficient kesterite devices. The device performances closely hinge on the quality of the kesterite absorber, which usually requires a Cu-poor and Zn-rich composition (Cu/Sn = 1.6–1.7, Cu/Zn ≤ 1.7, Zn/Sn ≥ 1.1), absence of secondary phases, and a large-area layer uniformity (href="#bib22" rid="bib22" class=" bibr popnode">Fairbrother et al., 2015, href="#bib71" rid="bib71" class=" bibr popnode">Tai et al., 2016, href="#bib77" rid="bib77" class=" bibr popnode">Vauche et al., 2016). Thus, it calls for ED with the ability to tune the precursor film composition and control its morphology sophisticatedly.For the stacking ED precursor, the composition can be manipulated by varying the thickness of each individual layer. But the nucleation and uniformity of the overlayers largely depend on those of the underlying layers, and as a result, the stacking ED precursors usually fail to exhibit a smooth, uniform, and compact morphology (href="#bib66" rid="bib66" class=" bibr popnode">Scragg et al., 2010, href="#bib77" rid="bib77" class=" bibr popnode">Vauche et al., 2016). Meanwhile, the morphological inhomogeneity always comes with the compositional fluctuation. The direct chalcogenization annealing of stacked precursors usually results in poor film morphologies even with the formation of secondary phases, ultimately leading to poor device efficiencies (href="#bib50" rid="bib50" class=" bibr popnode">Lin et al., 2014, href="#bib66" rid="bib66" class=" bibr popnode">Scragg et al., 2010). The pre-mixing of the stacking ED precursors at moderately lower temperatures is known as one expedient to improve the compactness, morphology roughness, and atomic homogeneity, leading to an 8.2% efficiency using a kesterite selenide CZTSe absorber (href="#bib38" rid="bib38" class=" bibr popnode">Guo et al., 2014, href="#bib77" rid="bib77" class=" bibr popnode">Vauche et al., 2016). In contrast, the alloy ED precursor offers a tantalizing advantage over the stacking ED, making the pre-annealing of the precursors no longer needed before the chalcogenization, and an 8% efficiency has been achieved based on an alloy ED kesterite selenide CZTSe absorber (href="#bib43" rid="bib43" class=" bibr popnode">Jeon et al., 2014). Nonetheless, alloy ED seems more challenging in the practical aspects on how to control the alloy composition, largely because of the big difference between the reduction potentials of metal ions. Although the use of complexing reagents, such as low-cost citrate and tartrate salts (href="#bib1" rid="bib1" class=" bibr popnode">Abd El Rehim and El Ayashy, 1978, href="#bib35" rid="bib35" class=" bibr popnode">Gougaud et al., 2013, href="#bib37" rid="bib37" class=" bibr popnode">Guaus and Torrent-Burgués, 2005, href="#bib45" rid="bib45" class=" bibr popnode">Kazimierczak and Ozga, 2013, href="#bib49" rid="bib49" class=" bibr popnode">Lee et al., 2013, href="#bib54" rid="bib54" class=" bibr popnode">Mkawi et al., 2014, href="#bib69" rid="bib69" class=" bibr popnode">Shin et al., 2016, href="#bib70" rid="bib70" class=" bibr popnode">Slupska and Ozga, 2014), may minimize this potential difference, the reduction of Zn ion is rather negative and competes with the hydrogen evolution. To make the deposition of Zn more efficient, one expedient is to increase the deposition potential (or current density) (href="#bib1" rid="bib1" class=" bibr popnode">Abd El Rehim and El Ayashy, 1978, href="#bib12" rid="bib12" class=" bibr popnode">Chen et al., 2000, href="#bib35" rid="bib35" class=" bibr popnode">Gougaud et al., 2013, href="#bib45" rid="bib45" class=" bibr popnode">Kazimierczak and Ozga, 2013, href="#bib49" rid="bib49" class=" bibr popnode">Lee et al., 2013); worse, its side effect leads to hydrogen evolution parallel to the film deposition, particularly for acidic baths (pH < 5), and even leads to precursor films with a rough and dendritic morphology (href="#bib35" rid="bib35" class=" bibr popnode">Gougaud et al., 2013, href="#bib49" rid="bib49" class=" bibr popnode">Lee et al., 2013, href="#bib69" rid="bib69" class=" bibr popnode">Shin et al., 2016, href="#bib70" rid="bib70" class=" bibr popnode">Slupska and Ozga, 2014). As a result, few groups are able to obtain well-performing kesterite solar cells using alloy ED. Hitherto, none of the kesterite publications could succeed in refining electrodeposit compositions without sacrificing the deposit morphology. This may be due, largely, to the increased complexity of the ternary alloy ED that needs to handle with three different component metal elements, compared with the industrialized single or binary ED techniques.The control of the alloy composition along with the deposit morphology needs the comprehensive and insightful knowledge of the co-plating process and the plating parameters, including bath compositions, plating potentials/current density, plating time, use of additives, and bath stability. This work addresses in detail these complicated operation variables of multinary alloy ED using kesterite CZTS as a case study. It is shown that the alloy composition and morphology can be exactly controlled through manipulation of these co-plating variables. Under the optimized conditions of alloy ED, the layer uniformity of precursors can rival those that were fabricated by the vacuum-based methods in the aspects of morphology and composition, manifesting the promise of alloy ED for the low-cost industrial fabrication of solar devices.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介电沉积(ED)是一种非真空的商业技术,具有证明的沉积能力通过使用电流减少电解质浴中的溶解盐,从而在基础材料上形成功能性涂层。已对元素周期表中的大多数元素(包括常规金属元素(例如,Cu,Zn,Sn,Au,Pt),碱土金属元素(例如,Mg [],Sr [])进行了ED可行性的评估。 ,Eu [],过渡族金属元素(例如Nb [],Ta [],Bi [])和非金属元素(例如Se [],Te [])。基于这些元素,可以对各种多功能涂层进行电沉积,以用于涂饰,微电子,纳米生物系统,太阳能电池生产等应用。特别是,ED在制备各种光电化学和光伏太阳能吸收膜方面取得了成功,包括Sb2Se3(),CdTe(),Cu2O(),CuSbS2(,href =“#bib67” rid =“ bib67” class =“ bibr popnode”> Septina等人,2014 ),Cu(In,Ga)Se2(CIGS)(href="#bib20" rid="bib20" class=" bibr popnode"> Duchatelet等,2013 ,href="#bib52" rid="bib52" class=" bibr popnode"> Lincot等,2004 ),Cu2ZnSnS(e)4 [CZTS (e)](href="#bib15" rid="bib15" class=" bibr popnode">哥伦布等,2015 ,href =“#bib58” rid =“ bib58”类=“ bibr popnode”> Peter,2015 )和CH3NH3PbI3(href="#bib13" rid="bib13" class=" bibr popnode"> Chen等人,2015 ,< a href =“#bib41” rid =“ bib41” class =“ bibr popnode”> Huang等人,2015 )。除吸收器外,功能性ZnO窗口层(href="#bib73" rid="bib73" class=" bibr popnode"> Tsin等人,2015 ,href =“#bib74” =“ bib74” class =“ bibr popnode”> Tsin等人,2016a ),基于锌的手指网格(href="#bib75" rid="bib75" class=" bibr popnode"> Tsin等人,2016b )和CuSCN(href="#bib80" rid="bib80" class=" bibr popnode">是等人,2015 )在ED也可以制备薄膜太阳能电池。此外,ED在卷对卷CIGS太阳能电池板制造中已经展示出巨大的成功,它基于电沉积的In-Se或Ga-Se单层覆盖的电沉积Cu-In-Ga合金的前体类型( href="#bib2" rid="bib2" class=" bibr popnode">阿克苏(Aksu)等人,2012 ,href =“#bib7” rid =“ bib7” class =“ bibr popnode” >Başolet al。,2009 )。在过去的十年中,钾长石CZTS(e)太阳能电池因其无毒且富含地球的性质而受到越来越多的关注。作为一种技术经济和大规模沉积技术而出现的ED已被广泛用于制造钾长石吸收剂前体。额外需要ED前驱体的硫属元素化,以形成最终的钾钛矿。很有可能,基于这种两阶段方法,经常报告了高性能(7-9%)的CZTS(e)太阳能电池设备(href="#bib38" rid="bib38" class=" bibr popnode"> Guo et al。,2014 ,href="#bib43" rid="bib43" class=" bibr popnode"> Jeon et al。,2014 ,href =“#bib77” rid =“ bib77” class =“ bibr popnode”> Vauche等人,2016 )。具体地,电沉积的前体可分为两种类型:堆叠层(即,Cu / Sn / Zn)和合金层(即,Cu-Zn-Sn),这两种类型均已成功地获得了高效的钾钛矿装置。器件的性能密切依赖于硅藻土吸收剂的质量,后者通常需要贫铜和富锌的成分(Cu / Sn = 1.6-1.7,Cu / Zn≤1.7,Zn / Sn≥1.1)阶段和大面积图层均匀性(href="#bib22" rid="bib22" class=" bibr popnode"> Fairbrother等人,2015 ,href =“#bib71” rid =“ bib71” class =“ bibr popnode”> Tai等人,2016 ,href="#bib77" rid="bib77" class=" bibr popnode"> Vauche等人,2016 )。因此,它要求ED具有调节前体膜组成和精细控制其形态的能力。对于堆叠的ED前体,可以通过改变每个单独层的厚度来操纵该组成。但是,覆盖层的形核和均匀性很大程度上取决于下层的形核和均匀性,因此,堆叠的ED前体通常无法表现出平滑,均匀和紧凑的形态(href =“#bib66” rid =“ bib66“ class =” bibr popnode“> Scragg等人,2010 ,href="#bib77" rid="bib77" class=" bibr popnode"> Vauche等人,2016 )。与此同时,形态不均匀总是伴随着成分的波动。堆叠前体的直接硫属元素化退火通常会导致薄膜形貌较差,即使形成第二相也是如此,最终导致较差的器件效率(href="#bib50" rid="bib50" class=" bibr popnode"> Lin等等,2014 ,href="#bib66" rid="bib66" class=" bibr popnode"> Scragg等,2010 )。众所周知,在较低温度下预混合堆叠的ED前驱体是一种改善致密性,形态粗糙度和原子均质性的权宜之计,可使用亚硒酸钾酯型CZTSe吸收剂实现8.2%的效率(href =“#bib38 “ rid =” bib38“ class =” bibr popnode“> Guo et al。,2014 ,href="#bib77" rid="bib77" class=" bibr popnode"> Vauche et al。,2016 )。相比之下,ED合金前驱物比堆叠式ED具有诱人的优势,使得在进行硫属元素化之前不再需要对前驱物进行预退火,基于ED硅藻土硒化锌CZTSe吸收剂(< a href =“#bib43” rid =“ bib43” class =“ bibr popnode”> Jeon等人,2014 )。尽管如此,在实际方面,合金ED在如何控制合金成分方面似乎更具挑战性,这主要是由于金属离子的还原电位之间存在很大差异。尽管使用了络合试剂,例如低成本的柠檬酸盐和酒石酸盐(href="#bib1" rid="bib1" class=" bibr popnode"> Abd El Rehim和El Ayashy,1978 , href="#bib35" rid="bib35" class=" bibr popnode"> Gougaud等人,2013 ,href =“#bib37” rid =“ bib37” class =“ bibr popnode” > Guaus andTorrent-Burgués,2005 ,href="#bib45" rid="bib45" class=" bibr popnode">卡齐米恰克和奥兹加,2013 ,href =“#bib49 “ rid =” bib49“ class =” bibr popnode“>李等人,2013 ,href="#bib54" rid="bib54" class=" bibr popnode">姆卡维等人,2014 ,href="#bib69" rid="bib69" class=" bibr popnode"> Shin et al。,2016 ,href =“#bib70” rid =“ bib70”类=“ bibr popnode”> Slupska和Ozga,2014 )可能会最小化这种电势差,Zn离子的还原相当不利,并与氢的释放竞争。为了使Zn的沉积更加有效,一种权宜之计是提高沉积电位(或电流密度)(href="#bib1" rid="bib1" class=" bibr popnode"> Abd El Rehim和El Ayashy, 1978 ,href="#bib12" rid="bib12" class=" bibr popnode"> Chen等人,2000 ,href =“#bib35” rid =“ bib35” class =“ bibr popnode”> Gougaud等人,2013 ,href="#bib45" rid="bib45" class=" bibr popnode">卡齐米尔扎克和奥兹加,2013 ,href =“#bib49” rid =“ bib49” class =“ bibr popnode”>李等人,2013 );更糟糕的是,它的副作用导致氢气平行于薄膜沉积而析出,特别是对于酸性浴(pH <5),甚至导致前驱体薄膜具有粗糙和树枝状的形态(href =“#bib35” rid =“ bib35 “ class =” bibr popnode“> Gougaud等,2013 ,href="#bib49" rid="bib49" class=" bibr popnode">李等,2013 , href="#bib69" rid="bib69" class=" bibr popnode"> Shin等人,2016 ,href =“#bib70” rid =“ bib70” class =“ bibr popnode” > Slupska和Ozga,2014 )。结果,很少有人能够使用合金ED获得性能良好的硅藻土太阳能电池。迄今为止,在不牺牲沉积物形态的情况下,没有一种钾镁长石出版物能够成功地精炼电沉积组合物。这可能主要是由于与工业化的单或二元ED技术相比,需要使用三种不同成分的金属元素处理的三元合金ED的复杂性增加。合金成分的控制以及沉积形态需要对镀层工艺和镀层参数(包括镀液成分,镀层电势/电流密度,镀层时间,添加剂的使用和镀液稳定性)的全面而深入的了解。这项工作以案例研究为基础,详细解决了多元合金ED这些复杂的操作变量。结果表明,通过控制这些共镀层变量可以精确地控制合金的成分和形态。在合金ED的优化条件下,前驱体的层均匀性在形态和组成方面可以与基于真空的方法制造的前者相媲美,这表明合金ED可用于低成本的太阳能器件工业制造。

著录项

  • 期刊名称 iScience
  • 作者

    Jie Ge; Yanfa Yan;

  • 作者单位
  • 年(卷),期 2018(1),-1
  • 年度 2018
  • 页码 55–71
  • 总页数 36
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号