首页> 美国卫生研究院文献>iScience >Mesoporous TiO2/TiC@C Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage
【2h】

Mesoporous TiO2/TiC@C Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage

机译:具有稳定的TiO2-C界面的介孔TiO2 / TiC @ C复合膜用于稳定的锂存储

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionLithium-ion batteries (LIBs) are widely used in portable electric devices and electric vehicles (, , ). Extensive research has been carried out to develop transition metal oxides (TMOs)-based composite materials as LIB anodes (, , , , , , , , , , , ). In most cases, carbon materials including mesoporous carbon, carbon nanotubes, and graphene are employed as ideal matrixes for TMOs anodes owing to their unique properties such as excellent conductivity and flexibility, which can facilitate stable and fast lithium storage (href="#bib39" rid="bib39" class=" bibr popnode">Zhang et al., 2014, href="#bib9" rid="bib9" class=" bibr popnode">Fang et al., 2016, href="#bib24" rid="bib24" class=" bibr popnode">Mo et al., 2017). However, current TMOs/C composite anodes still suffer from poor cycling stability due to unstable TMOs-C interfaces resulting from the volume change difference between carbon and TMOs upon Li+ insertion/extraction. The unstable TMOs-C interfaces may cause aggregation of TMOs nanoparticles as well as collapse of carbon frameworks. As a result, the cycling life over 1,000 cycles based on TMOs/carbon composites have been extremely limited. Therefore the construction of stable TMOs-carbon interfaces is the key for stable and robust lithium storage, which remains a considerable challenge.Among the different kinds of TMOs, TiO2 is an attractive material for LIBs owing to its natural abundance, low cost, and environmental benignancy (href="#bib20" rid="bib20" class=" bibr popnode">Liu and Chen, 2014, href="#bib21" rid="bib21" class=" bibr popnode">Liu et al., 2015a, href="#bib38" rid="bib38" class=" bibr popnode">Zhang et al., 2012). TiO2/C composite anode materials with various dimensions and structures have been fabricated, which include hierarchical TiO2/C nanocomposite monoliths (href="#bib13" rid="bib13" class=" bibr popnode">Huang et al., 2016), ordered mesoporous TiO2/C nanocomposites (href="#bib37" rid="bib37" class=" bibr popnode">Zeng et al., 2013), graphitic carbon conformal coating of mesoporous TiO2 hollow spheres (href="#bib22" rid="bib22" class=" bibr popnode">Liu et al., 2015b), and mesoporous TiO2 coating on flexible graphitized carbon (href="#bib23" rid="bib23" class=" bibr popnode">Liu et al., 2016). However, all TiO2/C composites also suffer from severe structural collapse stemming from unstable TiO2-C interfaces. In this regard, TiO2/C composite represents a typical class of LIB anode materials facing the problem of serious structure disintegration. Therefore there is a pressing need to solve the aforementioned problem of TiO2/C composite.Herein, to construct stable TiO2-C interfaces, TiC nanodots with high conductivity and electrochemical inactivity (href="#bib32" rid="bib32" class=" bibr popnode">Wang et al., 2016b, href="#bib33" rid="bib33" class=" bibr popnode">Yao et al., 2011, href="#bib26" rid="bib26" class=" bibr popnode">Peng et al., 2016, href="#bib1" rid="bib1" class=" bibr popnode">Allcorn and Manthiram, 2015) are introduced to TiO2-C interfaces by an in situ carbothermic reduction (href="#bib34" rid="bib34" class=" bibr popnode">Yu et al., 2007) that occurs in TiO2-nanocrystals-embedded mesoporous carbon framework (TiO2@C) membranes. The designed strategy leads to the formation of stable TiO2-C interfaces where TiC nanodots act as a bridge to link TiO2 nanocrystals and carbon frameworks accurately. The obtained mesoporous TiO2/TiC@C composite membranes have a conductive, robust, and mesoporous framework. Besides, TiO2 nanocrystals and TiC nanodots are interconnected and highly dispersed in the mesoporous carbon frameworks. When used as additive-free and binder-free electrodes, the TiO2/TiC@C membranes deliver a high capacity of ∼237 mA⋅h⋅g−1 at a current density of 0.4 A⋅g−1. More importantly, an ultra-long cycling life (up to 5,000 cycles with over 68.4% reversible capacity retention) and superior rate performance can be achieved. Furthermore, a flexible full battery with impressive battery performance was assembled by using the TiO2/TiC@C membranes as the anode, highlighting the great potential of the composite membranes in flexible devices.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介锂离子电池(LIB)广泛用于便携式电动设备和电动汽车( ,,)。已经进行了广泛的研究来开发基于过渡金属氧化物(TMO)的复合材料,作为LIB阳极(“,”,“,”,“,”,“,”)。在大多数情况下,由于包括介孔碳,碳纳米管和石墨烯在内的碳材料具有出色的导电性和柔韧性,这些独特的特性可促进稳定和快速的锂存储(href =“# bib39“ rid =” bib39“ class =” bibr popnode“>张等人,2014 ,href="#bib9" rid="bib9" class=" bibr popnode">方等人, 2016 ,href="#bib24" rid="bib24" class=" bibr popnode"> Mo等人,2017 )。然而,由于TMOs-C界面不稳定,这是由于TMOs / C复合阳极在Li + 插入/抽出时碳和TMO之间的体积变化差异所致。不稳定的TMOs-C界面可能导致TMOs纳米颗粒聚集以及碳骨架崩溃。结果,基于TMO /碳复合物的超过1000次循环的循环寿命受到极大限制。因此,稳定的TMO-碳界面的构建是稳定可靠的锂存储的关键,这仍然是一个巨大的挑战。在各种TMO中,由于其天然丰度,低成本和环境友好性,TiO2是LIB的有吸引力的材料。良性(href="#bib20" rid="bib20" class=" bibr popnode"> Liu and Chen,2014 ,href =“#bib21” rid =“ bib21” class =“ bibr popnode “> Liu等人,2015a ,href="#bib38" rid="bib38" class=" bibr popnode"> Zhang等人,2012 )。已制造出具有各种尺寸和结构的TiO2 / C复合阳极材料,包括分层的TiO2 / C纳米复合材料整料(href="#bib13" rid="bib13" class=" bibr popnode"> Huang et al。,2016 ),有序介孔TiO2 / C纳米复合材料(href="#bib37" rid="bib37" class=" bibr popnode"> Zeng等人,2013 ),石墨化碳共形涂层介孔TiO2空心球(href="#bib22" rid="bib22" class=" bibr popnode"> Liu等人,2015b ),以及柔性石墨化碳上的介孔TiO2涂层(href = “#bib23” rid =“ bib23” class =“ bibr popnode”> Liu等人,2016 )。然而,由于不稳定的TiO2-C界面,所有TiO2 / C复合材料也遭受严重的结构塌陷。在这方面,TiO2 / C复合材料代表了典型的一类LIB阳极材料,面临着严重的结构分解问题。因此,迫切需要解决上述TiO2 / C复合材料的问题。这里,要构建稳定的TiO2-C界面,具有高电导率和电化学惰性的TiC纳米点(href =“#bib32” rid =“ bib32”类=“ bibr popnode”> Wang等人,2016b ,href="#bib33" rid="bib33" class=" bibr popnode"> Yao等人,2011 ,href =“#bib26” rid =“ bib26” class =“ bibr popnode”> Peng等人,2016 ,href="#bib1" rid="bib1" class=" bibr popnode"> Allcorn和Manthiram,2015 )通过原位碳热还原法引入TiO2-C界面(href="#bib34" rid="bib34" class=" bibr popnode"> Yu等,2007 < / a>)发生在TiO2纳米晶体嵌入的中孔碳骨架(TiO2 @ C)膜中。设计的策略导致形成稳定的TiO2-C界面,其中TiC纳米点充当桥梁,以准确地连接TiO2纳米晶体和碳骨架。所得的介孔TiO 2 / TiC @ C复合膜具有导电,坚固且介孔的骨架。此外,TiO 2 纳米晶体和TiC纳米点相互连接并高度分散在介孔碳骨架中。当用作无添加剂和无粘合剂的电极时,TiO 2 / TiC @ C膜在室温下可提供约237 mA·h⋅g -1 的高容量。电流密度为0.4A⋅g -1 。更重要的是,可以实现超长的循环寿命(最多5,000个循环,可逆容量保持率超过68.4%)和优异的倍率性能。此外,以TiO 2 / TiC @ C膜为阳极组装了具有令人印象深刻的电池性能的柔性全电池,突出了复合膜在柔性器件中的巨大潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号