首页> 美国卫生研究院文献>iScience >Self-Assembled Porous-Silica within N-Doped Carbon Nanofibers as Ultra-flexible Anodes for Soft Lithium Batteries
【2h】

Self-Assembled Porous-Silica within N-Doped Carbon Nanofibers as Ultra-flexible Anodes for Soft Lithium Batteries

机译:N掺杂碳纳米纤维中的自组装多孔二氧化硅作为软锂电池的超柔性阳极

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThe evolving soft electronics and portable electronics require soft, lightweight, and durable lithium (Li)-ion batteries (LIBs) as power sources (, , , , , , ). SiO2 has been highlighted as a promising anode material owing to its large specific capacity as part of the development of high-energy-density LIBs (, , ). Although the huge volume changes of SiO2 and the side reactions with the electrolytes during cycling were identified as the main reasons of short cycle lives of SiO2 anodes (, , ), it has been recently recognized that nanoscale designs contributed substantially to improve the cycle lives (, , href="#bib43" rid="bib43" class=" bibr popnode">Wu et al., 2012, href="#bib46" rid="bib46" class=" bibr popnode">Yang et al., 2014, href="#bib48" rid="bib48" class=" bibr popnode">Yuan et al., 2016).However, achieving long-term stability still remains challenging for the nanoscale anodes with commercial level of SiO2 loadings (e.g., >1 mg/cm2). For one thing, SiO2 nanoparticles (NPs) were susceptible to separate from the conductive additives during the huge volume changes, which easily led to structural degradation and unstable solid-electrolyte interface (SEI) (href="#bib3" rid="bib3" class=" bibr popnode">Aricò et al., 2005, href="#bib34" rid="bib34" class=" bibr popnode">Sasidharan et al., 2011, href="#bib38" rid="bib38" class=" bibr popnode">Tu et al., 2014, href="#bib45" rid="bib45" class=" bibr popnode">Yan et al., 2013). For another, SiO2 was commonly known to be an intrinsic electronically insulating material owing to its wide band gap (href="#bib36" rid="bib36" class=" bibr popnode">Sun et al., 2008). Although coating SiO2 with carbon materials was a solution to such problems, the capacities of the LIBs that contained high SiO2 loading anodes also fade quickly (href="#bib1" rid="bib1" class=" bibr popnode">An et al., 2017, href="#bib21" rid="bib21" class=" bibr popnode">Kim et al., 2014). In addition, from a practical perspective, it is still a great challenge to manufacture large-scale flexible electrodes with low resistances by using the available thin-film technologies. The conventional SiO2 anodes utilizing binders and metal current collectors were typically too rigid and heavy, and therefore could not meet the requirements of soft battery applications (href="#bib9" rid="bib9" class=" bibr popnode">Dirican et al., 2015, href="#bib17" rid="bib17" class=" bibr popnode">Jang et al., 2009, href="#bib50" rid="bib50" class=" bibr popnode">Zhou et al., 2012).Here, we propose a scalable strategy of manufacturing hierarchical structured anodes with commercial level of SiO2 loadings and durable flexibility to tackle the aforementioned problems. Having noticed that the SEI stability and stress dissipation during the volume expansion of SiO2 are key to the robust operation of SiO2 anodes (href="#bib7" rid="bib7" class=" bibr popnode">Chen et al., 2017), porous SiO2 (p-SiO2) NPs were first synthesized via a sol-gel technique by employing the positively charged cetyltrimethyl ammonium bromide (CTAB) as a soft template (href="/pmc/articles/PMC6545390/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1A) (href="#bib40" rid="bib40" class=" bibr popnode">Wang et al., 2016a). We did not wash the residual CTAB off after the reactions because a small amount of CTAB made these p-SiO2 NPs easier to be dispersed in the spinning solutions. The p-SiO2 NPs shared the characteristics of limited volume changes of nanoscaled SiO2 and sufficient porosity for SiO2 volume expansions (href="#bib1" rid="bib1" class=" bibr popnode">An et al., 2017). Then a sol-gel electrospinning technique was developed to assemble these NPs into polyacrylonitrile (PAN) precursor nanofibers (NFs). This strategy allowed the positively charged p-SiO2-CTAB composites to electrostatically attract the negatively charged PAN in the spinning solution as shown in href="/pmc/articles/PMC6545390/figure/fig1/" target="figure" class="fig-table-link figpopup" rid-figpopup="fig1" rid-ob="ob-fig1" co-legend-rid="lgnd_fig1">Figure 1A, which led to uniformly distributed p-SiO2 nanoclusters within the matrix of PAN NFs. During the subsequent calcination process, the CTAB was decomposed and the PAN was converted into N-doped carbon nanofibers (N-CNFs), consequently forming overlapped p-SiO2 nanoclusters within N-CNFs (href="#bib35" rid="bib35" class=" bibr popnode">Sui et al., 2016, href="#bib47" rid="bib47" class=" bibr popnode">Ye et al., 2017).href="/pmc/articles/PMC6545390/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">class="inline_block ts_canvas" href="/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=6545390_gr1.jpg" target="tileshopwindow">target="object" href="/pmc/articles/PMC6545390/figure/fig1/?report=objectonly">Open in a separate windowclass="figpopup" href="/pmc/articles/PMC6545390/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1">Figure 1Fabrication of the Ultra-flexible Anodes of p-SiO2@N-CNF and Their Applications in Soft LIBs(A) Schematic illustration for the electrostatic assembly of p-SiO2 NPs containing CTAB with PAN followed by electrospinning and carbonization to fabricate flexible p-SiO2@N-CNF anode.(B) TEM image of the honeycomb-structured p-SiO2 NPs.(C) An SEM image of the nanofibrous film of p-SiO2@N-CNF with interconnected architectures. The inset figure is a single CNF that contained overlapped p-SiO2 nanoclusters.(D) The inner structures of typical soft Li-batteries that contained the flexible p-SiO2@N-CNF anode and LiFePO4 (LFP) cathode.(E) The digital image of the soft Li-battery.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介不断发展的软电子产品和便携式电子产品需要柔软,轻便且耐用的锂(Li)离子电池(LIB)作为电源(,,,,,,,)。 SiO2作为高能密度LIBs(,)发展的一部分,由于其大的比容量而被强调为有希望的阳极材料。尽管SiO2的巨大体积变化和循环过程中与电解质的副反应被确定为SiO2阳极循环寿命短的主要原因(``,''),但最近已经认识到纳米级设计在很大程度上改善了循环寿命( ,,href="#bib43" rid="bib43" class=" bibr popnode">吴等人,2012 ,href =“#bib46” rid =“ bib46” class =“ bibr popnode“> Yang等人,2014 ,href="#bib48" rid="bib48" class=" bibr popnode"> Yuan等人,2016 )。但是,实现长期目标对于具有工业水平的SiO2负载(例如,> 1 mg / cm 2 )的纳米级阳极,长期稳定性仍然具有挑战性。一方面,SiO2纳米颗粒(NPs)在体积变化时很容易与导电添加剂分离,这很容易导致结构退化和不稳定的固体电解质界面(SEI)(href =“#bib3” rid =“ bib3“ class =” bibr popnode“>Aricò等,2005 ,href="#bib34" rid="bib34" class=" bibr popnode"> Sasidharan等,2011 ,href="#bib38" rid="bib38" class=" bibr popnode"> Tu等人,2014 ,href =“#bib45” rid =“ bib45” class =“ bibr popnode “> Yan等人,2013 )。另一个原因是,由于其宽带隙,SiO2通常被认为是一种固有的电子绝缘材料(href="#bib36" rid="bib36" class=" bibr popnode"> Sun et al。,2008 )。尽管用碳材料涂覆SiO2是解决此类问题的方法,但包含高SiO2负载阳极的LIB的容量也会迅速消失(href="#bib1" rid="bib1" class=" bibr popnode"> An等等,2017 ,href="#bib21" rid="bib21" class=" bibr popnode"> Kim等人,2014 )。另外,从实用的角度来看,通过使用可用的薄膜技术来制造具有低电阻的大规模柔性电极仍然是巨大的挑战。使用粘合剂和金属集电器的常规SiO2阳极通常太硬和太重,因此不能满足软电池应用的要求(href="#bib9" rid="bib9" class=" bibr popnode"> Dirican et al。,2015 ,href="#bib17" rid="bib17" class=" bibr popnode"> Jang et al。,2009 ,href =“#bib50” rid =“ bib50” class =“ bibr popnode”> Zhou等人,2012 )。在此,我们提出了一种可扩展的策略,以制造具有商业水平的SiO2负载量和持久灵活性的分层结构化阳极,以解决上述问题。注意到SiO2体积膨胀期间的SEI稳定性和应力耗散是SiO2阳极坚固运行的关键(href="#bib7" rid="bib7" class=" bibr popnode"> Chen等, 2017 ),首先采用带正电的十六烷基三甲基溴化铵(CTAB)作为软模板,通过溶胶-凝胶技术合成了多孔SiO2(p-SiO2)NP(href =“ / pmc / articles / PMC6545390 / figure / fig1 /“ target =” figure“ class =” fig-table-link figpopup“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“ co-legend-rid =” lgnd_fig1“>图1 A)(href="#bib40" rid="bib40" class=" bibr popnode"> Wang等人,2016a )。反应后,我们没有洗掉残留的CTAB,因为少量的CTAB使这些p-SiO2 NP易于分散在纺丝溶液中。 p-SiO2 NPs具有纳米级SiO 2 的有限体积变化和SiO 2 体积膨胀的足够孔隙度的特征(href =“#bib1” rid =“ bib1“ class =” bibr popnode“>等,2017年)。然后,开发了溶胶-凝胶电纺丝技术,将这些NPs组装成聚丙烯腈(PAN)前体纳米纤维(NFs)。此策略允许带正电的p-SiO 2 -CTAB复合材料静电吸引纺丝溶液中带负电的PAN,如href =“ / pmc / articles / PMC6545390 / figure / fig1 / “ target =” figure“ class =” fig-table-link figpopup“ rid-figpopup =” fig1“ rid-ob =” ob-fig1“ co-legend-rid =” lgnd_fig1“>图1 A,这导致了PAN NFs基质中p-SiO 2 纳米团簇的均匀分布。在随后的煅烧过程中,CTAB分解,PAN转化为掺杂N的碳纳米纤维(N-CNF),因此在N-CNF中形成重叠的p-SiO 2 纳米簇(href="#bib35" rid="bib35" class=" bibr popnode"> Sui等,2016 ,href="#bib47" rid="bib47" class=" bibr popnode">是,等,2017 )。<!-fig ft0-> <!-fig mode =文章f1-> href="/pmc/articles/PMC6545390/figure/fig1/" target="figure" rid-figpopup="fig1" rid-ob="ob-fig1"> <!-fig / graphic | fig / alternatives / graphic mode =“ anchred” m1-> class =“ inline_block ts_canvas” href =“ / core / lw / 2.0 / html / tileshop_pmc / tileshop_pmc_inline.html?title = Click%20on%20image% 20to%20zoom&p = PMC3&id = 6545390_gr1.jpg“ target =” tileshopwindow“> target="object" href="/pmc/articles/PMC6545390/figure/fig1/?report=objectonly">在单独的窗口 class =“ figpopup” href =“ / pmc / articles / PMC6545390 / figure / fig1 /” target =“ figure” rid-figpopup =“ fig1” rid-ob =“ ob -fig1“>图1 <!-标题a7-> p-SiO 2 @ N-CNF的超柔性阳极的制备及其在软LIB中的应用(A示意图处理含有CTAB和PAN的p-SiO 2 NP的静电组装,然后进行静电纺丝和碳化,以制备柔性p-SiO 2 @ N-CNF阳极。(B)蜂窝结构的p-SiO 2 NPs的TEM图像。(C)具有互连结构的p-SiO 2 @ N-CNF纳米纤维膜的SEM图像。插图是一个包含重叠的p-SiO 2 纳米簇的单个CNF。(D)典型的软锂电池的内部结构包含柔性p-SiO 2 @ N-CNF阳极和LiFePO 4 (LFP)阴极。(E)软锂电池的数字图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号