class='head no_bottom_margin' id='sec1title'>Int'/> Adaptive Regulation of Nitrate Transceptor NRT1.1 in Fluctuating Soil Nitrate Conditions
首页> 美国卫生研究院文献>iScience >Adaptive Regulation of Nitrate Transceptor NRT1.1 in Fluctuating Soil Nitrate Conditions
【2h】

Adaptive Regulation of Nitrate Transceptor NRT1.1 in Fluctuating Soil Nitrate Conditions

机译:硝态氮波动条件下硝态氮受体NRT1.1的自适应调控。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionNitrate is an essential mineral nutrient in plants and at the same time acts as a signaling molecule (, ). Its soil concentrations, however, fluctuate in several orders of magnitude from micromolar to millimolar range. To cope with these fluctuations, plants have developed sophisticated sensing and transport systems (). Rigorous molecular studies on ammonium and nitrate uptake have demonstrated the existence and functioning of two distinct uptake systems in plants referred to as high-affinity transport system (HATS) and low-affinity transport system (LATS) (, ). In low nutrient concentration, HATS is ON to scavenge ions and allows plants to maintain a normal uptake rate (, ). In high nutrient concentration, LATS is ON, leading to increased uptake along increasing nitrate gradient (, ). HATS usually follows Michaelis-Menten kinetics and displays saturation characteristics relative to LATS that increase linearly with concentrations. These differences primarily indicate the involvement of distinct sets of genes. Indeed, there are two distinct families of nitrate transporter genes, NRT1 and NRT2, associated with LATS and HATS, respectively (). With an interesting exception, recent studies have revealed that the nitrate transporter NRT1.1 (also known as NPF6.3 or CHL1), which is distinct from most of the members of both HATS and LATS gene family, contributes to both the systems and functions as transceptor (, ), a transporter cum receptor of changes in soil nitrate concentration. The dual-affinity modes of nitrate binding () and a phosphorylation switch allows NRT1.1 protein to control its capacity of switching between high- and low-affinity modes of uptake (). Detailed understanding of this molecular mechanism is essential for improving plant nutrient use efficiency (NUE) (, href="#bib8" rid="bib8" class=" bibr popnode">Gutiérrez, 2012) in a wide range of variation in soil nutrient availabilities, which, however, remains largely unknown.Independent of its transporter function, NRT1.1 also acts as a nitrate sensor, leading to rapid transcriptional regulations of several transporters and assimilatory genes called primary nitrate response (PNR) (href="#bib16" rid="bib16" class=" bibr popnode">Krouk et al., 2006, href="#bib10" rid="bib10" class=" bibr popnode">Ho et al., 2009). In the face of a wide range of variation in extracellular nitrate availabilities, plant adaptation is accompanied by quantifiable changes in PNR mediated by NRT1.1. In vitro and in vivo studies showed a biphasic primary response; at low nitrate concentrations, protein kinase CIPK23 phosphorylates Thr101 of NRT1.1, which allows the maintenance of a low-level primary response relative to the PNR level at high nitrate concentration (href="#bib10" rid="bib10" class=" bibr popnode">Ho et al., 2009). PNR studies in transgenic plants suggest that dual-affinity binding of nitrate and phosphorylation switch jointly allow NRT1.1 to sense a wide range of extracellular nitrate availabilities and are mainly responsible for biphasic adjustment of PNR (href="#bib20" rid="bib20" class=" bibr popnode">Medici and Krouk, 2014; href="#bib14" rid="bib14" class=" bibr popnode">Krouk, 2017). In nrt1.1 loss-of-function mutant plant Arabidopsis thaliana, it has evidently been noted that NRT1.1 regulates the expressions of the dedicated high-affinity transporter nrt2.1. At high nitrate concentrations, the expression of nrt2.1 is not down-regulated when nrt1.1 function is lost, which indicates a critical role of NRT1.1 in the PNR (href="#bib2" rid="bib2" class=" bibr popnode">Bouguyon et al., 2015). However, it remains unknown how the biphasic states of the PNR are regulated by sensing extracellular availabilities of nitrate concentrations.A key question about the biphasic states of NRT1.1 and their connection with dual-affinity nitrate binding and the phosphorylation at Thr101 has a potential structural basis. Recently reported apo- and nitrate-bound crystal structures of Arabidopsis thaliana NRT1.1 revealed a critical role of His 356 in nitrate binding and a phosphorylation-controlled dimerization switch that allows NRT1.1 to retain a dual-affinity mode of nitrate uptake (href="#bib26" rid="bib26" class=" bibr popnode">Sun et al., 2014, href="#bib22" rid="bib22" class=" bibr popnode">Parker and Newstead, 2014). This suggests that assembly and disassembly of the homodimer NRT1.1 controlled by the phosphorylation is responsible for toggling between low- and high-affinity modes of nitrate uptake (href="#bib26" rid="bib26" class=" bibr popnode">Sun et al., 2014). Despite this significant structural analysis, questions remain as to how the post-translational modifications associated with the nitrate sensing enables NRT1.1 to cope with a wide range of nitrate fluctuations. By comparative structural analyses of apo- and nitrate-bound X-ray crystallographic data of Arabidopsis thaliana NRT1.1 (href="#bib22" rid="bib22" class=" bibr popnode">Parker and Newstead, 2014), we report here that the intrinsic local asymmetries between the two protomers of NRT1.1 around the binding and Thr101 sites that are further enhanced by the nitrate binding provide a functional basis for having dual-affinity modes of nitrate binding. These asymmetries poise both the protomers for differential allosteric communications between the binding and phosphorylation sites, thereby regulating the phosphorylation-controlled dimerization of NRT1.1.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介硝酸盐是植物中必需的矿物质营养素,同时又是信号分子(,)。然而,其土壤浓度从微摩尔到毫摩尔范围波动了几个数量级。为了应对这些波动,工厂开发了先进的传感和运输系统()。对铵和硝酸盐吸收的严格分子研究表明,植物中存在两种不同的吸收系统,分别称为高亲和力转运系统(HATS)和低亲和力转运系统(LATS)()。在低养分浓度下,HATS可以清除离子,并使植物保持正常的吸收速率(,)。在高营养浓度下,LATS处于打开状态,导致硝酸盐梯度(,)升高而吸收增加。 HATS通常遵循Michaelis-Menten动力学,并显示相对于LATS的饱和度特征,饱和度随浓度线性增加。这些差异主要表明不同基因集的参与。确实,硝酸盐转运蛋白基因有两个不同的家族,即NRT1和NRT2,分别与LATS和HATS相关()。除了一个有趣的例外,最近的研究表明,硝酸盐转运蛋白NRT1.1(也称为NPF6.3或CHL1)与HATS和LATS基因家族的大多数成员截然不同,对系统和功能都有贡献。作为受体(,),是土壤硝酸盐浓度变化的转运体和受体。硝酸盐结合()和磷酸化开关的双重亲和模式使NRT1.1蛋白可以控制其在高亲和力和低亲和力吸收模式()之间切换的能力。对这种分子机制的详细了解对于提高植物的养分利用效率(NUE)至关重要(href="#bib8" rid="bib8" class=" bibr popnode">居蒂雷斯,2012 )土壤养分利用率的变化范围仍是未知之数。NRT1.1与其转运蛋白功能无关,也起硝酸盐传感器的作用,导致几种转运蛋白和同化基因的快速转录调控,称为初级硝酸盐响应(PNR) (href="#bib16" rid="bib16" class=" bibr popnode">克鲁等人,2006 ,href =“#bib10” rid =“ bib10” class =“ bibr popnode “> Ho等人,2009 )。面对细胞外硝酸盐利用率的广泛变化,植物适应性伴随着由NRT1.1介导的PNR的定量变化。体外和体内研究显示出双相主要反应;在低硝酸盐浓度下,蛋白激酶CIPK23使NRT1.1的Thr101磷酸化,这使得在高硝酸盐浓度下相对于PNR水平可以维持低水平的初级应答(href =“#bib10” rid =“ bib10”类=“ bibr popnode”> Ho等人,2009 )。在转基因植物中进行PNR研究表明,硝酸盐和磷酸化开关的双重亲和力结合在一起使NRT1.1能够感知广泛的细胞外硝酸盐利用率,并且主要负责PNR的双相调节(href =“#bib20” rid = “ bib20” class =“ bibr popnode”> Medici和Krouk,2014 ; href="#bib14" rid="bib14" class=" bibr popnode"> Krouk,2017 )。在nrt1.1功能丧失的突变植物拟南芥中,显然已经注意到NRT1.1调节着专用的高亲和力转运蛋白nrt2.1的表达。在高硝酸盐浓度下,当nrt1.1功能丧失时,nrt2.1的表达不会下调,这表明NRT1.1在PNR中起着至关重要的作用(href =“#bib2” rid =“ bib2” class =“ bibr popnode”> Bouguyon等人,2015 )。然而,目前尚不清楚如何通过检测硝酸盐浓度的细胞外利用率来调节PNR的双相状态。有关NRT1.1的双相状态及其与双亲和硝酸盐结合和Thr101磷酸化的联系的关键问题结构基础。最近报道的拟南芥NRT1.1的载脂蛋白和硝酸盐结合的晶体结构揭示了His 356在硝酸盐结合和磷酸化控制的二聚化开关中的关键作用,该开关使NRT1.1能够保持硝酸盐吸收的双亲和模式(< a href =“#bib26” rid =“ bib26” class =“ bibr popnode”> Sun et al。,2014 ,href="#bib22" rid="bib22" class=" bibr popnode">帕克和纽斯特德,2014年)。这表明由磷酸化控制的同型二聚体NRT1.1的组装和拆卸负责在低和高亲和力的硝酸盐吸收模式之间进行切换(href =“#bib26” rid =“ bib26” class =“ bibr popnode “> Sun等人,2014 )。尽管进行了重要的结构分析对于与硝酸盐感测相关的翻译后修饰如何使NRT1.1应对广泛的硝酸盐波动,仍然存在疑问。通过对拟南芥NRT1.1的载脂蛋白和硝酸盐结合的X射线晶体学数据进行比较结构分析(href="#bib22" rid="bib22" class=" bibr popnode"> Parker和Newstead,2014 ),我们在这里报告说,NRT1.1的两个启动子周围的结合和Thr101位点之间的固有局部不对称性,通过硝酸盐结合进一步增强,为具有双重亲和力的硝酸盐结合模式提供了功能基础。这些不对称性为结合和磷酸化位点之间的不同的变构通讯提供了启动子,从而调节了NRT1.1的磷酸化控制的二聚化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号