首页> 美国卫生研究院文献>iScience >Yolk-Shell Germanium@Polypyrrole Architecture with Precision Expansion Void Control for Lithium Ion Batteries
【2h】

Yolk-Shell Germanium@Polypyrrole Architecture with Precision Expansion Void Control for Lithium Ion Batteries

机译:卵壳锗@聚吡咯体系结构用于锂离子电池的精确扩展空隙控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThere has been a rapid increase in the demand for rechargeable lithium-ion batteries (LIBs) with long cycling lifetimes and high energy and power densities for next-generation advanced energy storage devices such as advanced portable electronics and fast-developing electric vehicles (, ). Owing to the limitation of the commercial graphite anode (theoretical capacity of only 372 mA hr g−1), the demands for next-generation batteries with high energy and power densities cannot be met (, ). Toward this aim, a large variety of anode materials for rechargeable batteries have been explored, mainly including oxides (e.g., Fe3O4, GeO2, and SiOx) and alloys (e.g., Sb, Sn, and Ge), owing to their high theoretical capacities and safe operation potential (, , , , , ). Among these materials, germanium (Ge) is a potential candidate to replace the commercial graphite anode for LIBs because of its high gravimetric and volumetric capacities (1,626 mA hr g−1 and 7,360 mA hr cm−3), low electrochemical potential of Li insertion/extraction (<0.5 V vs Li+/Li), excellent lithium diffusivity (400 times faster than in Si), and higher intrinsic electrical conductivity compared with Si. Despite these promising characteristics, the inferior structure stability due to the huge volume expansion (ca. 300% volume change for fully lithiated Ge) would result in the rapid capacity fade of the Ge-based electrode accompanied by a large irreversible capacity similar to Si, hindering the practical implementation of Ge anodes in future technological applications (, , ).To tackle this problem, two main strategies have been used to stabilizing the material structure and improving the electrochemical performance of Ge anodes by design of various nanostructures and electronically conductive coatings. Recently, the design of various nanostructures, such as nanowires (, , href="#bib11" rid="bib11" class=" bibr popnode">Kennedy et al., 2015), nanotubes (href="#bib22" rid="bib22" class=" bibr popnode">Liu et al., 2015a, href="#bib23" rid="bib23" class=" bibr popnode">Liu et al., 2015b, href="#bib31" rid="bib31" class=" bibr popnode">Song et al., 2012, href="#bib43" rid="bib43" class=" bibr popnode">Xiao et al., 2016), and porous structures (href="#bib27" rid="bib27" class=" bibr popnode">Park et al., 2010, href="#bib22" rid="bib22" class=" bibr popnode">Liu et al., 2015a, href="#bib23" rid="bib23" class=" bibr popnode">Liu et al., 2015b), has attracted great attention. Particularly, Park and co-workers rationally designed a porous germanium architecture, which induces only a 2% capacity decrease after 100 cycles (href="#bib27" rid="bib27" class=" bibr popnode">Park et al., 2010). The porous nanostructure materials show excellent cycle stability and rate capability because the uniform pores also act as a buffer to effectively alleviate the volume expansion and provide favorable structural stability during the lithiation/delithiation process (href="#bib27" rid="bib27" class=" bibr popnode">Park et al., 2010). Besides design of nanostructure strategies, electronically conductive coatings on Ge anode structures have been explored (href="#bib17" rid="bib17" class=" bibr popnode">Li et al., 2014, href="#bib24" rid="bib24" class=" bibr popnode">Ngo et al., 2014, href="#bib25" rid="bib25" class=" bibr popnode">Ngo et al., 2015, href="#bib38" rid="bib38" class=" bibr popnode">Wang et al., 2016, href="#bib29" rid="bib29" class=" bibr popnode">Seng et al., 2013). In this respect, Park and co-workers developed a facile method for the synthesis of Ge interconnected by a carbon buffer layer, which works as a channel for the supply of lithium during the charge-discharge process (href="#bib25" rid="bib25" class=" bibr popnode">Ngo et al., 2015). However, this strategy does not provide appropriate void space to alleviate the huge volume changes during lithium alloying and leaching and results in the pulverization, exfoliation, and aggregation of electrode materials. Very recently, yolk-shell architecture has attracted much attention in many fields, particularly in the field of energy storage (href="#bib47" rid="bib47" class=" bibr popnode">Zhang et al., 2016, href="#bib19" rid="bib19" class=" bibr popnode">Liu et al., 2012, href="#bib3" rid="bib3" class=" bibr popnode">Cai et al., 2015, href="#bib8" rid="bib8" class=" bibr popnode">Hong et al., 2013). The key design of the yolk-shell architecture in improving electrochemical performance lies in the ideal void space, which would be expanding/contracting freely upon lithium alloying and leaching without damaging the outer shell and, more importantly, be achieved with a minimal sacrifice of volumetric energy density. It is noteworthy that the volumetric capacity is an important indicator for the commercialization of electrode materials. If the void space is too much, even in the fully lithiated state, the core will not touch the shell, leading to the decrease of the volumetric capacity of the electrode. In addition, electrically conducting polymers such as polypyrrole may form a conducting elastic matrix, which offers a conducting backbone for the electrode material, and it could also be used as a flexible host matrix of electrode material to alleviate the huge volume changes during lithium alloying and leaching. Therefore, it remains a challenge to develop a facile approach for the synthesis of uniform yolk-shell architecture with the incorporation of the ideal void space and robust conducting polymer coating for the high volumetric capacity and long-cycle LIBs.It is noted that a conformal, homogeneous, and controllable nature of the sacrificial coating layer is crucial for appropriate void space of the yolk-shell architecture. Atomic layer deposition (ALD) is a technique to apply conformal, homogeneous, and controllable coating on high-surface nanostructures as the sacrificial layer by sequential, self-limiting surface reactions (href="#bib6" rid="bib6" class=" bibr popnode">George et al., 1996, href="#bib5" rid="bib5" class=" bibr popnode">George, 2010). Here, we developed a facile and highly controllable approach to uniform porous germanium@polypyrrole (PGe@PPy) yolk-shell architecture with conformal and controllable Al2O3 sacrificial layer by the ALD technique. There are several advantages of the yolk-shell architecture as anode material: (1) The presence of appropriate void space to alleviate the huge volume changes during lithium alloying and leaching, thus maintaining the structural stability of the outer shell to avoid the pulverization of electrode materials, and also achieved with a minimal sacrifice of volumetric capacity. (2) Recently, the inner relationship between the stability of the solid/electrolyte interphase (SEI) and the electrochemical properties of LIBs has been studied (href="#bib41" rid="bib41" class=" bibr popnode">Wu et al., 2012), which indicated that the SEI formed around the PPy shell during the cycles can be stable because the fully lithiated state of Ge core cannot damage the PPy outer shell. (3) The conductivity and stability can be improved for the yolk-shell architecture because the PPy outer shell has outstanding properties, including excellent chemical stability, electronic conductivity, and structural flexibility. Insight gained from this study can be applied to other high-capacity electrode materials, particularly those that suffer from huge volume expansion, offering a route for the future development of the promising electrode material for practical applications.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介对可充电锂离子电池(LIB)的需求迅速增长具有较长的循环寿命,并为下一代先进的能量存储设备(如先进的便携式电子设备和快速发展的电动汽车)提供了高能量和功率密度。由于商用石墨阳极的局限性(理论容量仅为372 mA hr g -1 ),无法满足对具有高能量和功率密度的下一代电池的需求(,)。为了实现这一目标,已经开发了多种可再充电电池用负极材料,这些材料由于其较高的理论容量和较高的电容量,主要包括氧化物(例如Fe3O4,GeO2和SiOx)和合金(例如Sb,Sn和Ge)。安全操作电位(,,,,,)。在这些材料中,锗(Ge)因其高的重量和体积容量(1,626 mA hr g -1 和7,360 mA hr cm −3 ),低的Li插入/萃取电化学势(<0.5 V vs Li + / Li),出色的锂扩散率(比Si快400倍)和更高的固有电学电导率与硅相比。尽管具有这些令人鼓舞的特性,但由于巨大的体积膨胀(完全锂化的Ge约有300%的体积变化)而导致的结构稳定性较差,会导致Ge基电极的容量迅速衰减,并伴随着类似于Si的不可逆大容量,为了解决未来技术应用中锗阳极的实际应用,为解决这一问题,人们通过设计各种纳米结构和导电涂层,采用了两种主要策略来稳定材料结构和改善锗阳极的电化学性能。最近,各种纳米结构的设计,例如纳米线(,,href="#bib11" rid="bib11" class=" bibr popnode"> Kennedy et al。,2015 ),纳米管(href =“#bib22” rid =“ bib22” class =“ bibr popnode”>刘等人,2015a ,href="#bib23" rid="bib23" class=" bibr popnode">刘等,2015b ,href="#bib31" rid="bib31" class=" bibr popnode">宋等,2012 ,href =“#bib43”摆脱=“ bib43” class =“ bibr popnode”> Xiao等人,2016 )和多孔结构(href="#bib27" rid="bib27" class=" bibr popnode"> Park等人。,2010 ,href="#bib22" rid="bib22" class=" bibr popnode">刘等人,2015a ,href =“#bib23” rid =“ bib23“ class =” bibr popnode“> Liu等人,2015b )引起了极大的关注。特别是,Park和他的同事合理地设计了一种多孔锗结构,该结构在100个循环后仅引起2%的容量降低(href="#bib27" rid="bib27" class=" bibr popnode"> Park等。 ,2010 )。多孔纳米结构材料显示出出色的循环稳定性和倍率性能,因为均匀的孔还充当缓冲剂,可有效减轻体积膨胀并在锂化/脱锂过程中提供有利的结构稳定性(href =“#bib27” rid =“ bib27 “ class =” bibr popnode“> Park等人,2010 )。除了设计纳米结构策略外,还探索了Ge阳极结构上的导电涂层(href="#bib17" rid="bib17" class=" bibr popnode"> Li等,2014 ,href =“#bib24” rid =“ bib24” class =“ bibr popnode”> Ngo等人,2014 ,href="#bib25" rid="bib25" class=" bibr popnode"> Ngo et al。,2015 ,href="#bib38" rid="bib38" class=" bibr popnode"> Wang et al。,2016 ,href =“#bib29” rid =“ bib29” class =“ bibr popnode”> Seng等人,2013 )。在这方面,Park和他的同事们开发了一种简便的方法来合成通过碳缓冲层互连的Ge,该方法用作充放电过程中锂的供应通道(href =“#bib25” rid =“ bib25” class =“ bibr popnode”> Ngo等人,2015 )。但是,该策略不能提供适当的空隙空间来缓解锂合金化和浸出过程中的巨大体积变化,并且会导致电极材料的粉碎,剥落和聚集。最近,卵黄壳结构在许多领域引起了很多关注,尤其是在储能领域(href="#bib47" rid="bib47" class=" bibr popnode"> Zhang等人,2016 < / a>,href="#bib19" rid="bib19" class=" bibr popnode">刘等人,2012 ,href =“#bib3” rid =“ bib3” class = “ bibr popnode”> Cai等人,2015 ,href="#bib8" rid="bib8" class=" bibr popnode"> Hong等人。,2013 )。卵黄-壳结构改善电化学性能的关键设计在于理想的空隙空间,该空隙将在锂合金化和浸出时自由膨胀/收缩,而不会损坏外壳,更重要的是,以最小的体积损失即可实现能量密度。值得注意的是,容量是电极材料商业化的重要指标。如果空隙太大,即使在完全锂化状态下,核也不会接触外壳,从而导致电极的容积减小。此外,导电聚合物(例如聚吡咯)可以形成导电弹性基质,为电极材料提供导电主干,还可以用作电极材料的柔性基质,以减轻锂合金化和锂合金化期间的巨大体积变化。浸出。因此,开发一种用于合成均一的蛋黄-壳结构的简便方法仍然是一个挑战,该方法需要结合理想的空隙空间和坚固的导电聚合物涂层,以实现高容量和长周期的LIBs。牺牲涂层的均匀,可控的性质对于卵黄壳结构的适当空隙空间至关重要。原子层沉积(ALD)是一种通过连续的自限性表面反应在高表面纳米结构上作为牺牲层施加保形,均匀且可控制的涂层的技术(href =“#bib6” rid =“ bib6”类=“ bibr popnode”>乔治等人,1996 ,href="#bib5" rid="bib5" class=" bibr popnode">乔治,2010 )。在这里,我们通过ALD技术开发了一种简便且高度可控的方法,以均匀,可控的Al2O3牺牲层形成均匀的多孔锗@聚吡咯(PGe @ PPy)卵黄壳结构。卵黄壳结构作为阳极材料具有以下优点:(1)存在适当的空隙空间以缓解锂合金化和浸出过程中的巨大体积变化,从而保持外壳的结构稳定性,避免电极粉化材料,并且还以最小的体积容量实现。 (2)最近,已经研究了固/电解质中间相(SEI)的稳定性与LIB电化学性质之间的内在联系(href="#bib41" rid="bib41" class=" bibr popnode"> Wu et al。,2012 ),表明在循环过程中在PPy壳周围形成的SEI可以保持稳定,因为Ge核的完全锂化状态不会损坏PPy壳。 (3)由于PPy外壳具有优异的性能,包括优异的化学稳定性,电子导电性和结构柔韧性,因此可以改善蛋黄-壳结构的导电性和稳定性。从这项研究中获得的见识可以应用于其他大容量电极材料,尤其是那些遭受大体积膨胀的电极材料,这为将来在实际应用中开发有前途的电极材料提供了一条途径。

著录项

  • 期刊名称 iScience
  • 作者单位
  • 年(卷),期 2018(9),-1
  • 年度 2018
  • 页码 521–531
  • 总页数 25
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号