首页> 美国卫生研究院文献>Journal of Bacteriology >Computational Analysis of Cysteine and Methionine Metabolism and Its Regulation in Dairy Starter and Related Bacteria
【2h】

Computational Analysis of Cysteine and Methionine Metabolism and Its Regulation in Dairy Starter and Related Bacteria

机译:乳品发酵剂和相关细菌中半胱氨酸和蛋氨酸代谢的计算分析及其调控

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sulfuric volatile compounds derived from cysteine and methionine provide many dairy products with a characteristic odor and taste. To better understand and control the environmental dependencies of sulfuric volatile compound formation by the dairy starter bacteria, we have used the available genome sequence and experimental information to systematically evaluate the presence of the key enzymes and to reconstruct the general modes of transcription regulation for the corresponding genes. The genomic organization of the key genes is suggestive of a subdivision of the reaction network into five modules, where we observed distinct differences in the modular composition between the families Lactobacillaceae, Enterococcaceae, and Leuconostocaceae, on the one hand, and the family Streptococcaceae, on the other. These differences are mirrored by the way in which transcription regulation of the genes is structured in these families. In the Lactobacillaceae, Enterococcaceae, and Leuconostocaceae, the main shared mode of transcription regulation is methionine (Met) T-box-mediated regulation. In addition, the gene metK, encoding S-adenosylmethionine (SAM) synthetase, is controlled via the SMK box (SAM). The SMK box is also found upstream of metK in species of the family Streptococcaceae. However, the transcription control of the other modules is mediated via three different LysR-family regulators, MetR/MtaR (methionine), CmbR (O-acetyl[homo]serine), and HomR (O-acetylhomoserine). Redefinition of the associated DNA-binding motifs helped to identify/disentangle the related regulons, which appeared to perfectly match the proposed subdivision of the reaction network.
机译:源自半胱氨酸和蛋氨酸的硫挥发性化合物为许多乳制品提供了特征性的气味和味道。为了更好地理解和控制乳制品发酵剂细菌形成的硫酸盐挥发性化合物的环境依赖性,我们使用了可用的基因组序列和实验信息来系统地评估关键酶的存在并为相应的重构方法构建转录调控的一般模式。基因。关键基因的基因组结构暗示了将反应网络细分为五个模块,在该模块中,我们一方面观察到了乳杆菌科,肠球菌科和亮粘菌科,而链球菌科则在模块组成上存在明显差异。另一个。这些差异反映了这些家族中基因转录调控的构建方式。在乳杆菌科,肠球菌科和亮葡菌科中,转录调控的主要共享模式是蛋氨酸(Met)T-box介导的调控。另外,编码S-腺苷甲硫氨酸(SAM)合成酶的metK基因是通过SMK盒(SAM)控制的。在链球菌科物种的metK上游也发现了SMK盒。然而,其他模块的转录控制是通过三种不同的LysR家族调节剂,MetR / MtaR(蛋氨酸),CmbR(O-乙酰基丝氨酸)和HomR(O-乙酰基丝氨酸)介导的。重新定义相关的DNA结合基序有助于识别/解离相关的调节子,这似乎与拟议的反应网络细分完全匹配。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号